969 resultados para Flux (Metallurgy)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research project uses field measurements to investigate the cooling of a triple-junction, photovoltaic cell under natural convection when subjected to various amounts of insolation. The team built an experimental apparatus consisting of a mirror and Fresnel lens to concentrate light onto a triple-junction photovoltaic cell, mounted vertically on a copper heat sink. Measurements were taken year-round to provide a wide range of ambient conditions. A surface was then generated, in MATLAB, using Sparrow’s model for natural convection on a vertical plate under constant heat flux. This surface can be used to find the expected operating temperature of a cell at any location, given the ambient temperature and insolation. This research is an important contribution to the industry because it utilizes field data that represents how a cell would react under normal operation. It also extends the use of a well-known model from a one-sun environment to a multi-sun one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparative wetting behavior of Sn-0.7Cu and Sn-0.7Cu-0.3Ni solders on Cu and Ni substrates were assessed through the wetting balance test. No-clean (NC), non-activated (R) and water soluble organic acid (WS) fluxes were used to assess the wetting behavior for three different solder bath temperatures of 255, 275 and 295 °C. Experimental results unveiled that adding of 0.3 wt% Ni into Sn-0.7Cu solder can improve the wetting on Cu substrate when NC and WS fluxes are used. However, such addition of Ni did not improve the wetting of Sn-0.7Cu solder for R-type flux. In the case of Ni substrate, addition of Ni helped to improve the wetting for all three types of fluxes as higher wetting forces were documented for Sn-0.7Cu-0.3Ni solder compared to the Sn-0.7Cu solder. Among the fluxes, worst performance was observed for R-type flux. Very large contact angles were recorded for both solders with this kind of flux. Experimental results also revealed that higher solder bath temperature played an important role to lower the contact angle, to increase the wetting force and to enhance the wetting. Computer modeling of wetting balance test also revealed that both the wetting force and meniscus height are inversely proportional to the contact angles. Besides, solder bath depth and radius do not affect significantly on the wetting behavior.