903 resultados para Flash fermentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lactobacillus plantarum C4 has been tested in in vitro pH-controlled anaerobic faecal batch cultures as compared to Lactobacillus rhamnosus GG to determine changes caused to the composition of faecal bacteria. Effects upon major groups of the microbiota and levels of short-chain fatty acids (SCFA) were assessed over 24 h. Concomitantly, hydrophobic character and ability of both bacterial cells to adhere in vitro to Caco-2 cells were investigated. Quantitative analysis of bacterial populations revealed that there was a significant increase in Lactobacillus/Enterococcus numbers in vessels with probiotic supplemented with fructooligosaccharides (FOS), compared to the negative control. L. plantarum C4 showed to have more hydrophilic behaviour and fulfilled better adhesive properties, compared to L. rhamnosus GG. Thus, L. plantarum C4 can modulate the intestinal microbiota in vitro, promoting changes in some numerically and metabolically relevant microbial populations and shifts in the production of SCFA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our study investigated the effects of condensed tannins (CT) on rumen in vitro methane (CH4) production and fermentation characteristics by incubating lucerne in buffered rumen fluid in combination with different CT extracts at 0 (control), 40, 80 and 120 g CT/kg of substrate DM. Condensed tannins were extracted from four sainfoin accessions: Rees ‘A’, CPI63763, Cotswold Common and CPI63767. Gas production (GP) was measured using a fully automated GP apparatus with CH4 measured at distinct time points. Condensed tannins differed substantially in terms of polymer size and varied from 13 (Rees ‘A’) to 73 (CPI63767) mean degree of polymerization, but had relatively similar characteristics in terms of CT content, procyanidin: prodelphinidin (PC: PD) and cis:trans ratios. Compared to control, addition of CT from CPI63767 and CPI63763 at 80 and 120 g CT/kg of substrate DM reduced CH4 by 43% and 65%, and by 23% and 57%, respectively, after 24-h incubation. Similarly, CT from Rees ‘A’ and Cotswold Common reduced CH4 by 26% and 46%, and by 28% and 46% respectively. Addition of increasing level of CT linearly reduced the maximum rates of GP and CH4 production, and the estimated in vitro organic matter digestibility. There was a negative linear and quadratic (p < 0.01) relation between CT concentration and total volatile fatty acid (VFA) production. Inclusion of 80 and 120 g CT/kg of substrate DM reduced (p < 0.001) branched-chain VFA production and acetate: propionate ratio and was lowest for CPI63767. A decrease in proteolytic activity as indirectly shown by a change in VFA composition favouring a shift towards propionate and reduction in branched-chain VFA production varied with type of CT and was highest for CPI63767. In conclusion, these results suggest that tannin polymer size is an important factor affecting in vitro CH4 production which may be linked to the CT interaction with dietary substrate or microbial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates flash flood forecast and warning communication, interpretation, and decision making, using data from a survey of 418 members of the public in Boulder, Colorado, USA. Respondents to the public survey varied in their perceptions and understandings of flash flood risks in Boulder, and some had misconceptions about flash flood risks, such as the safety of crossing fast-flowing water. About 6% of respondents indicated consistent reversals of US watch-warning alert terminology. However, more in-depth analysis illustrates the multi-dimensional, situationally dependent meanings of flash flood alerts, as well as the importance of evaluating interpretation and use of warning information along with alert terminology. Some public respondents estimated low likelihoods of flash flooding given a flash flood warning; these were associated with lower anticipated likelihood of taking protective action given a warning. Protective action intentions were also lower among respondents who had less trust in flash flood warnings, those who had not made prior preparations for flash flooding, and those who believed themselves to be safer from flash flooding. Additional analysis, using open-ended survey questions about responses to warnings, elucidates the complex, contextual nature of protective decision making during flash flood threats. These findings suggest that warnings can play an important role not only by notifying people that there is a threat and helping motivate people to take protective action, but also by helping people evaluate what actions to take given their situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flour-rich waste (FRW) and by-product streams generated by bakery, confectionery and wheat milling plants could be employed as the sole raw materials for generic fermentation media production, suitable for microbial oil synthesis. Wheat milling by-products were used in solid state fermentations (SSF) of Aspergillus awamori for the production of crude enzymes, mainly glucoamylase and protease. Enzyme-rich SSF solids were subsequently employed for hydrolysis of FRW streams into nutrient-rich fermentation media. Batch hydrolytic experiments using FRW concentrations up to 205 g/L resulted in higher than 90%(w/w) starch to glucose conversion yields and 40% (w/w) total Kjeldahl nitrogen to free amino nitro-gen conversion yields. Starch to glucose conversion yields of 98.2, 86.1 and 73.4% (w/w) were achieved when initial FRW concentrations of 235, 300 and 350 g/L were employed in fed-batch hydrolytic experiments, respectively. Crude hydrolysates were used as fermentation media in shake flask cultures with the oleaginous yeast Lipomyces starkeyi DSM 70296 reaching a total dry weight of 30.5 g/L with a microbial oil content of 40.4% (w/w), higher than that achieved in synthetic media. Fed-batch bioreactor cultures led to a total dry weight of 109.8 g/L with a microbial oil content of 57.8% (w/w) and productivity of 0.4 g/L/h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapeseed meal (RSM) hydrolysate was evaluated as substitute for commercial nutrient supplements in 1,3-propanediol (PDO) fermentation using the strain Clostridium butyricum VPI 1718. RSM was enzymatically converted into a generic fermentation feedstock, enriched in amino acids, peptides and various micro-nutrients, using crude enzyme consortia produced via solid state fermentation by a fungal strain of Aspergillus oryzae. Initial free amino nitrogen concentration influenced PDO production in batch cultures. RSM hydrolysates were compared with commercial nutrient supplements regarding PDO production in fed-batch cultures carried out in a bench-scale bioreactor. The utilization of RSM hydrolysates in repeated batch cultivation resulted in a PDO concentration of 65.5 g/L with an overall productivity of 1.15 g/L/h that was almost 2 times higher than the productivity achieved when yeast extract was used as nutrient supplement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By-products streams from a sunflower-based biodiesel plant were utilised for the production of fermentation media that can be used for the production of polyhydroxyalkanoates (PHA). Sunflower meal was utilised as substrate for the production of crude enzyme consortia through solid state fermentation (SSF) with the fungal strain Aspergillus oryzae. Fermented solids were subsequently mixed with unprocessed sunflower meal aiming at the production of a nutrient-rich fermentation feedstock. The highest free amino nitrogen (FAN) and inorganic phosphorus concentrations achieved were 1.5 g L-1 and 246 mg L-1, respectively, when an initial proteolytic activity of 6.4 U mL-1 was used. The FANconcentrationwas increased to 2.3 g L-1 when the initial proteolytic activity was increased to 16 U mL-1. Sunflower meal hydrolysates were mixed with crude glycerol to provide fermentationmedia that were evaluated for the production of poly(3-hydroxybutyrateco- 3-hydroxyvalerate) (P(3HB-co-3HV)) using Cupriavidus necator DSM545. The P(3HB-co-3HV) (9.9 g l-1) produced contained 3HB and 3HV units with 97 and 3 mol %, respectively. Integrating PHA production in existing 1st generation biodiesel production plants through valorisation of by-product streams could improve their sustainability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An in vitro study was conducted to investigate the effects of condensed tannins (CT) structural properties, i.e. average polymer size (or mean degree of polymerization); percentage of cis flavan-3-ols and percentage of prodelphinidins in CT extracts on methane production (CH4) and fermentation characteristics. CT were extracted from eight plants in order to obtain different CT types: black currant leaves, goat willow leaves, goat willow twigs, pine bark, red currant leaves, sainfoin plants, weeping willow catkins and white clover flowers. They were analysed for CT content and CT composition by thiolytic degradation, followed by HPLC analysis. Grass silage was used as a control substrate. Condensed tannins were added to the substrate at a concentration of 40 g/kg, with or without polyethylene glycol (+ or −PEG 6000 treatment) to inactivate tannins, and then incubated for 72 h in mixed buffered rumen fluid from three different lactating dairy cows per run. Total cumulative gas production (GP) was measured by an automated gas production system. During the incubation, 12 gas samples (10 μl) were collected from each bottle headspace at 0, 2, 4, 6, 8, 12, 24, 30, 36, 48, 56 and 72 h of incubation and analyzed for CH4. A modified Michaelis–Menten model was fitted to the CH4 concentration patterns and model estimates were used to calculate total cumulative CH4 production (GPCH4). Total cumulative gas production and GPCH4 curves were fitted using biphasic and monophasic modified Michaelis-Menten models, respectively. Addition of PEG increased GP, GPCH4, and CH4 concentration compared to the −PEG treatment. All CT types reduced GPCH4 and CH4 concentration. All CT increased the half time of GP and GPCH4. Moreover, all CT decreased the maximum rate of fermentation for GPCH4 and rate of substrate degradation. The correlation between CT structure and GPCH4 and fermentation characteristics showed that the proportion of prodelphinidins within CT had the largest effect on fermentation characteristics, followed by average 27 polymer size and percentage of cis-flavan-3-ols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four rumen-fistulated Holstein heifers (134 +/- 1 kg initial BW) were used in a 4 x 4 Latin square design to determine the effects of delaying daily feed delivery time on intake, ruminal fermentation, behavior, and stress response. Each 3-wk experimental period was preceded by 1 wk in which all animals were fed at 0800 h. Feed bunks were cleaned at 0745 h and feed offered at 0800 h (T0, no delay), 0900 (T1), 1000 (T2), and 1100 (T3) from d1 to 21 with measurements taken during wk 1 and 3. Heifers were able to see each other at all times. Concentrate and barley straw were offered in separate compartments of the feed bunks, once daily and for ad libitum intake. Ruminal pH and saliva cortisol concentrations were measured at 0, 4, 8, and 12 h postfeeding on d 3 and 17 of each experimental period. Fecal glucocorticoid metabolites were measured on d 17. Increasing length of delay in daily feed delivery time resulted in a quadratic response in concentrate DMI (low in T1 and T2; P = 0.002), whereas straw DMI was greatest in T1 and T3 (cubic P = 0.03). Treatments affected the distribution of DMI within the day with a linear decrease observed between 0800 and 1200 h but a linear increase during nighttimes (2000 to 0800 h), whereas T1 and T2 had reduced DMI between 1200 and 1600 h (quadratic P = 0.04). Water consumption (L/d) was not affected but decreased linearly when expressed as liters per kilogram of DMI (P = 0.01). Meal length was greatest and eating rate slowest in T1 and T2 (quadratic P <= 0.001). Size of the first meal after feed delivery was reduced in T1 on d 1 (cubic P = 0.05) and decreased linearly on d 2 (P = 0.01) after change. Concentrate eating and drinking time (shortest in T1) and straw eating time (longest in T1) followed a cubic trend (P = 0.02). Time spent lying down was shortest and ruminating in standing position longest in T1 and T2. Delay of feeding time resulted in greater daily maximum salivary cortisol concentration (quadratic P = 0.04), which was greatest at 0 h in T1 and at 12 h after feeding in T2 (P < 0.05). Daily mean fecal glucocorticoid metabolites were greatest in T1 and T3 (cubic P = 0.04). Ruminal pH showed a treatment effect at wk 1 because of increased values in T1 and T3 (cubic P = 0.01). Delaying feed delivery time was not detrimental for rumen function because a stress response was triggered, which led to reduced concentrate intake, eating rate, and size of first meal, and increased straw intake. Increased salivary cortisol suggests that animal welfare is compromised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several accounts put forth to explain the flash-lag effect (FLE) rely mainly on either spatial or temporal mechanisms. Here we investigated the relationship between these mechanisms by psychophysical and theoretical approaches. In a first experiment we assessed the magnitudes of the FLE and temporal-order judgments performed under identical visual stimulation. The results were interpreted by means of simulations of an artificial neural network, that wits also employed to make predictions concerning the F LE. The model predicted that a spatio-temporal mislocalisation would emerge from two, continuous and abrupt-onset, moving stimuli. Additionally, a straightforward prediction of the model revealed that the magnitude of this mislocalisation should be task-dependent, increasing when the use of the abrupt-onset moving stimulus switches from a temporal marker only to both temporal and spatial markers. Our findings confirmed the model`s predictions and point to an indissoluble interplay between spatial facilitation and processing delays in the FLE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incomplete and/or sluggish maltotriose fermentation causes both quality and economic problems in the ale-brewing industry. Although it has been proposed previously that the sugar uptake must be responsible for these undesirable phenotypes, there have been conflicting reports on whether all the known alpha-glucoside transporters in Saccharomyces cerevisiae (MALx1, AGT1, and MPH2 and MPH3 transporters) allow efficient maltotriose utilization by yeast cells. We characterized the kinetics of yeast cell growth, sugar consumption, and ethanol production during maltose or maltotriose utilization by several S. cerevisiae yeast strains (both MAL constitutive and AM inducible) and by their isogenic counterparts with specific deletions of the AGT1 gene. Our results clearly showed that yeast strains carrying functional permeases encoded by the MAL21, MAL31, and/or MAL41 gene in their plasma membranes were unable to utilize maltotriose. While both high-and low-affinity transport activities were responsible for maltose uptake from the medium, in the case of maltotriose, the only low-affinity (K-m, 36 +/- 2 mM) transport activity was mediated by the AGT1 permease. In conclusion, the AGT1 transporter is required for efficient maltotriose fermentation by S. cerevisiae yeasts, highlighting the importance of this permease for breeding and/or selection programs aimed at improving sluggish maltotriose fermentations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flash points (T(FP)) of hydrocarbons are calculated from their flash point numbers, N(FP), with the relationship T(FP) (K) = 23.369N(FP)(2/3) + 20.010N(FP)(1/3) + 31.901 In turn, the N(FP) values can be predicted from experimental boiling point numbers (Y(BP)) and molecular structure with the equation N(FP) = 0.987 Y(BP) + 0.176D + 0.687T + 0.712B - 0.176 where D is the number of olefinic double bonds in the structure, T is the number of triple bonds, and B is the number of aromatic rings. For a data set consisting of 300 diverse hydrocarbons, the average absolute deviation between the literature and predicted flash points was 2.9 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a novel method for calculating flash points of acyclic alkanes from flash point numbers, N(FP), which can be calculated from experimental or calculated boiling point numbers (Y(BP)) with the equation N(FP) = 1.020Y(BP) - 1.083 Flash points (FP) are then determined from the relationship FP(K) = 23.369N(FP)(2/3) + 20.010N(FP)(1/3) + 31.901 For it data set of 102 linear and branched alkanes, the correlation of literature and predicted flash points has R(2) = 0.985 and an average absolute deviation of 3.38 K. N(FP) values can also be estimated directly from molecular structure to produce an even closer correspondence of literature and predicted FP values. Furthermore, N(FP) values provide a new method to evaluate the reliability of literature flash point data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flash points (T(FP)) of organic compounds are calculated from their flash point numbers, N(FP), with the relationship T(FP) = 23.369N(FP)(2/3) + 20.010N(FP)(1/3) + 31.901. In turn, the N(FP) values can be predicted from boiling point numbers (Y(BP)) and functional group counts with the equation N(FP) = 0.974Y(BP) + Sigma(i)n(i)G(i) + 0.095 where G(i) is a functional group-specific contribution to the value of N(FP) and n(i) is the number of such functional groups in the structure. For a data set consisting of 1000 diverse organic compounds, the average absolute deviation between reported and predicted flash points was less than 2.5 K.