985 resultados para Fit-body
Resumo:
Modern intramedullary nails, which are utilised for the treatment of bone fractures, need to be designed to fit the anatomy of the patient population. Traditional and recent semi-automated approaches for quantifying the anatomical fit between bones and nail designs suffer from various drawbacks. This thesis proposed an automated comprehensive nail design validation method. The developed software tool was utilised to quantify the anatomical fit of four commercial nail designs. Furthermore, the thesis demonstrated the existence of a bone-nail specific nail entry point. The developed method is of great benefit for the implant manufacturing industry as a nail design validation tool.
Resumo:
Background Chlamydia (C.) trachomatis is the most prevalent bacterial sexually transmitted infection worldwide and the leading cause of preventable blindness. Genetic approaches to investigate C. trachomatis have been only recently developed due to the organism’s intracellular developmental cycle. HtrA is a critical stress response serine protease and chaperone for many bacteria and in C. trachomatis has been previously shown to be important for heat stress and the replicative phase of development using a chemical inhibitor of the CtHtrA activity. In this study, chemically-induced SNVs in the cthtrA gene that resulted in amino acid substitutions (A240V, G475E, and P370L) were identified and characterized. Methods SNVs were initially biochemically characterized in vitro using recombinant protein techniques to confirm a functional impact on proteolysis. The C. trachomatis strains containing the SNVs with marked reductions in proteolysis were investigated in cell culture to identify phenotypes that could be linked to CtHtrA function. Results The strain harboring the SNV with the most marked impact on proteolysis (cthtrAP370L) was detected to have a significant reduction in the production of infectious elementary bodies. Conclusions This provides genetic evidence that CtHtrA is critical for the C. trachomatis developmental cycle.
Resumo:
Objectives: To examine the association of maternal pregravid body mass index (BMI) and child offspring, all-cause hospitalisations in the first 5 years of life. Methods: Prospective birth cohort study. From 2006 to 2011, 2779 pregnant women (2807 children) were enrolled in the Environments for Healthy Living: Griffith birth cohort study in South-East Queensland, Australia. Hospital delivery record and self-report baseline survey of maternal, household and demographic factors during pregnancy were linked to the Queensland Hospital Admitted Patients Data Collection from 1 November 2006 to 30 June 2012, for child admissions. Maternal pregravid BMI was classified as underweight (<18.5 kg m−2), normal weight (18.5–24.9 kg m−2), overweight (25.0–29.9 kg m−2) or obese (30 kg m−2). Main outcomes were the total number of child hospital admissions and ICD-10-AM diagnostic groupings in the first 5 years of life. Negative binomial regression models were calculated, adjusting for follow-up duration, demographic and health factors. The cohort comprised 8397.9 person years (PYs) follow-up. Results: Children of mothers who were classified as obese had an increased risk of all-cause hospital admissions in the first 5 years of life than the children of mothers with a normal BMI (adjusted rate ratio (RR) =1.48, 95% confidence interval 1.10–1.98). Conditions of the nervous system, infections, metabolic conditions, perinatal conditions, injuries and respiratory conditions were excessive, in both absolute and relative terms, for children of obese mothers, with RRs ranging from 1.3–4.0 (PYs adjusted). Children of mothers who were underweight were 1.8 times more likely to sustain an injury or poisoning than children of normal-weight mothers (PYs adjusted). Conclusion: Results suggest that if the intergenerational impact of maternal obesity (and similarly issues related to underweight) could be addressed, a significant reduction in child health care use, costs and public health burden would be likely.
Resumo:
The concept of energy gap(s) is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity) is not constant, may fade out with time if the initial conditions are maintained, and depends on the 'efficiency' with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s) can be estimated by at least two methods, i.e. i) assessment by longitudinal overfeeding studies, imposing (by design) an initial positive energy imbalance gap; ii) retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability) and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population) and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both) is clouded by a high level of uncertainty.
Resumo:
The flooding of urbanised areas constitutes a hazard to the population and infrastructure. Floods through inundated urban environments have been studied recently and the potential impact of flowing waters on pedestrians is not well known. Herein the stability of individuals in floodwaters is reviewed based upon the re-analysis of detailed field measurements in an inundated section of the central business district of the City of Brisbane (Australia) during the 2011 flood. Detailed water elevation and velocity data were recorded. On-site observations showed some hydrodynamic instability linked to local topographic effects, in the form of a combination of fast turbulent fluctuations and (very) slow fluctuations of water level and velocity associated with surges. The flow conditions in Gardens Point Road was unsafe for individuals and a review of past guidelines suggests that many previous recommendations are over-optimistic and unsafe in real floodwaters.
Resumo:
A common finding in the brand ex tension literature is that perceived fit has a directionally consistent impact on the extension evaluation. However, most of the literature ignores a more common marketplace reality, namely, competition. Drawing on categorization theory and on the notion t hat consumers evaluate brand extensions by a category - based processing, this research argues that consumers not only transfer quality perceptions about parent brand products from one category to another but also its competitive context and links. Results s how that when perceived rivalry between two brands in the parent category is transferred to the extension category, perceived favourability increases, regardless of the perceived fit between the parent brand and the extension category.
Resumo:
The aim of the study was to examine differences in total body water (TBW) measured using single-frequency (SF) and multi-frequency (MF) modes of bioelectrical impedance spectroscopy (BIS) in children and adults measured in different postures using the deuterium (2H) dilution technique as the reference. Twenty-three boys and 26 adult males underwent assessment of TBW using the dilution technique and BIS measured in supine and standing positions using two frequencies of the SF mode (50 kHz and 100 kHz) and the MF mode. While TBW estimated from the MF mode was comparable, extra-cellular fluid (ECF) and intra-cellular fluid (ICF) values differed significantly (p < 0.01) between the different postures in both groups. In addition, while estimated TBW in adult males using the MF mode was significantly (p < 0.01) greater than the result from the dilution technique, TBW estimated using the SF mode and prediction equation was significantly (p < 0.01) lower in boys. Measurement posture may not affect estimation of TBW in boys and adult males, however, body fluid shifts may still occur. In addition, technical factors, including selection of prediction equation, may be important when TBW is estimated from measured impedance.
Resumo:
A single-generation dataset consisting of 1,730 records from a selection program for high growth rate in giant freshwater prawn (GFP, Macrobrachium rosenbergii) was used to derive prediction equations for meat weight and meat yield. Models were based on body traits [body weight, total length and abdominal width (AW)] and carcass measurements (tail weight and exoskeleton-off weight). Lengths and width were adjusted for the systematic effects of selection line, male morphotypes and female reproductive status, and for the covariables of age at slaughter within sex and body weight. Body and meat weights adjusted for the same effects (except body weight) were used to calculate meat yield (expressed as percentage of tail weight/body weight and exoskeleton-off weight/body weight). The edible meat weight and yield in this GFP population ranged from 12 to 15 g and 37 to 45 %, respectively. The simple (Pearson) correlation coefficients between body traits (body weight, total length and AW) and meat weight were moderate to very high and positive (0.75–0.94), but the correlations between body traits and meat yield were negative (−0.47 to −0.74). There were strong linear positive relationships between measurements of body traits and meat weight, whereas relationships of body traits with meat yield were moderate and negative. Step-wise multiple regression analysis showed that the best model to predict meat weight included all body traits, with a coefficient of determination (R 2) of 0.99 and a correlation between observed and predicted values of meat weight of 0.99. The corresponding figures for meat yield were 0.91 and 0.95, respectively. Body weight or length was the best predictor of meat weight, explaining 91–94 % of observed variance when it was fitted alone in the model. By contrast, tail width explained a lower proportion (69–82 %) of total variance in the single trait models. It is concluded that in practical breeding programs, improvement of meat weight can be easily made through indirect selection for body trait combinations. The improvement of meat yield, albeit being more difficult, is possible by genetic means, with 91 % of the variation in the trait explained by the body and carcass traits examined in this study.
Resumo:
Here we describe a protocol for advanced CUBIC (Clear, Unobstructed Brain/Body Imaging Cocktails and Computational analysis). The CUBIC protocol enables simple and efficient organ clearing, rapid imaging by light-sheet microscopy and quantitative imaging analysis of multiple samples. The organ or body is cleared by immersion for 1–14 d, with the exact time required dependent on the sample type and the experimental purposes. A single imaging set can be completed in 30–60 min. Image processing and analysis can take <1 d, but it is dependent on the number of samples in the data set. The CUBIC clearing protocol can process multiple samples simultaneously. We previously used CUBIC to image whole-brain neural activities at single-cell resolution using Arc-dVenus transgenic (Tg) mice. CUBIC informatics calculated the Venus signal subtraction, comparing different brains at a whole-organ scale. These protocols provide a platform for organism-level systems biology by comprehensively detecting cells in a whole organ or body.
Resumo:
Malnutrition is common in end-stage liver disease, but a correction after transplantation is expected. Body cell mass (BCM) assessment using total body potassium (TBK) measurements is considered the gold standard for assessing nutritional status. The aim of this study was to examine the BCM and, therefore, nutritional status of long-term survivors after childhood liver transplantation. © 2014 American Association for the Study of Liver Diseases.
Resumo:
The aim of the study was to determine the reliability of body mass index based (BMI) cutoff values in diagnosing obesity among Sri Lankan children. Height, weight, waist circumference (WC) and hip circumference (HC) in 282 children were measured. Total body water was determined by deuterium dilution and fat mass (FM) derived using age and gender specific constants. A percentage FM of 30% for girls and 25% for boys were considered as cutoff levels for obesity. Two hundred and eighty two children (M/F: 158/124) were studied and 99 (80%) girls and 72 (45.5%) boys were obese based on % body fat. Eight (6.4%) girls and nine (5.7%) boys were obese based on International Obesity Task Force (IOTF) cutoff values. Percentage FM and WC centile charts were able to diagnose a significant proportion of children as true obese children. The FM and BMI were closely associated in both girls (r = 0.82, p < 0.001) and boys (r = 0.87, p < 0.001). Percentage FM and BMI had a very low but significant association; girls (r = 0.32, p < 0.001) and boys (r = 0.68, p < 0.001). FM had a significant association with WC and HC. BMI based cutoff values had a specificity of 100% but a very low sensitivity, varying between 8% and 23.6%. BMI is a poor indicator of the percentage fat and the commonly used cutoff values were not sensitive to detect cases of childhood obesity in Sri Lankan children.
Resumo:
Objective: To develop bioelectrical impedance analysis (BIA) equations to predict total body water (TBW) and fat-free mass (FFM) of Sri Lankan children. Subjects/Methods: Data were collected from 5- to 15-year-old healthy children. They were randomly assigned to validation (M/F: 105/83) and cross-validation (M/F: 53/41) groups. Height, weight and BIA were measured. TBW was assessed using isotope dilution method (D2 O). Multiple regression analysis was used to develop preliminary equations and cross-validated on an independent group. Final prediction equation was constructed combining the two groups and validated by PRESS (prediction of sum of squares) statistics. Impedance index (height2/impedance; cm2/Ω), weight and sex code (male = 1; female = 0) were used as variables. Results: Independent variables of the final prediction equation for TBW were able to predict 86.3% of variance with root means-squared error (RMSE) of 2.1l. PRESS statistics was 2.1l with press residuals of 1.2l. Independent variables were able to predict 86.9% of variance of FFM with RMSE of 2.7 kg. PRESS statistics was 2.8 kg with press residuals of 1.4 kg. Bland Altman technique showed that the majority of the residuals were within mean bias±1.96 s.d. Conclusions: Results of this study provide BIA equation for the prediction of TBW and FFM in Sri Lankan children. To the best of our knowledge there are no published BIA prediction equations validated on South Asian populations. Results of this study need to be affirmed by more studies on other closely related populations by using multi-component body composition assessment.
Resumo:
Recently, media 'scandals' have pervaded a number of Australian body contact sports, in particular rugby league, rugby union and Australian rules football. Utilising the theoretical framework of masculinities, this research interviews footballers to gauge their perceptions of this media attention and how it compares to their own perspectives regarding off-field violence. Drawing inspiration from James Messerschmidt's (2000) 'Nine Lives' study and R.W. Connell's (1995) theoretical masculinities framework, in-depth, semi-structured interviews—known as life histories—were conducted with 12 footballers. Twelve life histories were completed with four men from each of the three major Australian football codes, namely Australian rules football, rugby union and rugby league. The research explores linkages between masculinity, body contact sport and engagement (or lack thereof) in violence 'off field'.
Resumo:
Objectives: Obesity is a disease with excess body fat where health is adversely affected. Therefore it is prudent to make the diagnosis of obesity based on the measure of percentage body fat. Body composition of a group of Australian children of Sri Lankan origin were studied to evaluate the applicability of some bedside techniques in the measurement of percentage body fat. Methods: Height (H) and weight (W) was measured and BMI (W/H2) calculated. Bioelectrical impedance analysis (BIA) was measured using tetra polar technique with an 800 μA current of 50 Hz frequency. Total body water was used as a reference method and was determined by deuterium dilution and fat free mass and hence fat mass (FM) derived using age and gender specific constants. Percentage FM was estimated using four predictive equations, which used BIA and anthropometric measurements. Results: Twenty-seven boys and 15 girls were studied with mean ages being 9.1 years and 9.6 years, respectively. Girls had a significantly higher FM compared to boys. The mean percentage FM of boys (22.9 ± 8.7%) was higher than the limit for obesity and for girls (29.0 ± 6.0%) it was just below the cut-off. BMI was comparatively low. All but BIA equation in boys under estimated the percentage FM. The impedance index and weight showed a strong association with total body water (r 2 = 0.96, P < 0.001). Except for BIA in boys all other techniques under diagnosed obesity. Conclusions: Sri Lankan Australian children appear to have a high percentage of fat with a low BMI and some of the available indirect techniques are not helpful in the assessment of body composition. Therefore ethnic and/or population specific predictive equations have to be developed for the assessment of body composition, especially in a multicultural society using indirect methods such as BIA or anthropometry.
Resumo:
Background: Body cell mass (BCM) may be estimated in clinical practice to assess functional nutritional status, eg, in patients with anorexia nervosa. Interpretation of the data, especially in younger patients who are still growing, requires appropriate adjustment for size. Previous investigations of this general issue have addressed chemical rather than functional components of body composition and have not considered patients at the extremes of nutritional status, in whom the ability to make longitudinal comparisons is of particular importance. Objective: Our objective was to determine the power by which height should be raised to adjust BCM for height in women of differing nutritional status. Design: BCM was estimated by K-40 counting in 58 healthy women, 33 healthy female adolescents, and 75 female adolescents with anorexia nervosa. The relation between BCM and height was explored in each group by using log-log regression analysis. Results: The powers by which height should be raised to adjust BCM,A,ere 1.73. 1.73, and 2.07 in the women, healthy female adolescents, and anorexic female adolescents, respectively. A simplified version of the index, BCM/height(2), was appropriate for all 3 categories and was negligibly correlated with height. Conclusions: In normal-weight women, the relation between height and BCM is consistent with that reported previously between height and fat-free mass. Although the consistency of the relation between BCM and fat-free mass decreases with increasing weight loss, the relation between height and BCM is not significantly different between normal-weight and underweight women. The index BCM/height(2) is easy to calculate and applicable to both healthy and underweight women. This information may be helpful in interpreting body-composition data in clinical practice.