925 resultados para Fish and shrimp
Resumo:
Introduction: The National Oceanic and Atmospheric Administration’s Biogeography Branch has conducted surveys of reef fish in the Caribbean since 1999. Surveys were initially undertaken to identify essential fish habitat, but later were used to characterize and monitor reef fish populations and benthic communities over time. The Branch’s goals are to develop knowledge and products on the distribution and ecology of living marine resources and provide resource managers, scientists and the public with an improved ecosystem basis for making decisions. The Biogeography Branch monitors reef fishes and benthic communities in three study areas: (1) St. John, USVI, (2) Buck Island, St. Croix, USVI, and (3) La Parguera, Puerto Rico. In addition, the Branch has characterized the reef fish and benthic communities in the Flower Garden Banks National Marine Sanctuary, Gray’s Reef National Marine Sanctuary and around the island of Vieques, Puerto Rico. Reef fish data are collected using a stratified random sampling design and stringent measurement protocols. Over time, the sampling design has changed in order to meet different management objectives (i.e. identification of essential fish habitat vs. monitoring), but the designs have always remained: • Probabilistic – to allow inferences to a larger targeted population, • Objective – to satisfy management objectives, and • Stratified – to reduce sampling costs and obtain population estimates for strata. There are two aspects of the sampling design which are now under consideration and are the focus of this report: first, the application of a sample frame, identified as a set of points or grid elements from which a sample is selected; and second, the application of subsampling in a two-stage sampling design. To evaluate these considerations, the pros and cons of implementing a sampling frame and subsampling are discussed. Particular attention is paid to the impacts of each design on accuracy (bias), feasibility and sampling cost (precision). Further, this report presents an analysis of data to determine the optimal number of subsamples to collect if subsampling were used. (PDF contains 19 pages)
Resumo:
The California Fish and Game Commission (Commission) has the authority to require one or any combination of Bycatch Reduction Device (BRD) types in the trawl fishery within California waters for Pacific ocean shrimp (Pandalus jordani), most commonly referred to as pink shrimp. The purpose of this report is to provide the Commission with the best available information about the BRDs used in the pink shrimp trawl fishery. The mandatory requirement for BRDs occurred in California in 2002, and in Oregon and Washington in 2003, resulting from an effort to minimize bycatch of overfished and quota managed groundfish species. Three types of BRDs currently satisfy the requirement for this device in the California fishery: 1) the Nordmøre grate (rigid-grate excluder); 2) soft-panel excluder; and 3) fisheye excluder; however, the design, specifications, and efficacy differ by BRD type. Although no data has been collected on BRDs directly from the California pink shrimp fishery, extensive research on the efficacy and differences among BRD types has been conducted by the Oregon Department of Fish and Wildlife (ODFW) since the mid-1990s. Rigid-grate excluders are widely considered to be the most effective of the three BRD types at reducing groundfish bycatch. Over 90 percent of the Oregon pink shrimp fleet use rigid-grate excluders. The majority of the current California pink shrimp fleet also uses rigid-grate excluders, according to a telephone survey conducted by the California Department of Fish and Game (Department) in 2007-2008 of pink shrimp fishermen who have been active in the California fishery in recent years. Hinged rigid-grate excluders have been developed in recent years to reduce the bending of the BRD on vessels that employ net reels to stow and deploy their trawl nets, and they have been used successfully on both single- and double-rig vessels in Oregon. Soft-panel excluders have been demonstrated to be effective at reducing groundfish bycatch, although excessive shrimp loss and other problems have also been associated with this design. Fisheye excluders have been used in the California fishery in the past, but they were disapproved in Oregon and Washington in 2003 because they were found to be less effective at reducing groundfish bycatch than other designs. The reputation of the United States west coast pink shrimp fishery as one of the cleanest shrimp fisheries in the world is largely attributed to the effectiveness of BRDs at reducing groundfish bycatch. Nevertheless, BRD research and development is still a relatively new field and additional modifications and methods may further reduce bycatch rates in the pink shrimp fishery.(PDF contains 12 pages.)
Resumo:
(PDF contains 3 pages.)
Resumo:
(PDF contains 3 pages.)
Resumo:
(PDF contains 3 pages.)
Resumo:
(PDF contains 4 pages.)
Resumo:
(PDF contains 5 pages.)
Resumo:
(PDF contains 3 pages.)
Resumo:
(PDF contains 6 pages.)
Resumo:
(PDF contains 5 pages.)
Resumo:
(PDF contains 4 pages.)
Resumo:
(PDF contains 6 pages.)
Resumo:
Otoliths commonly are used to determine the taxon, age, and size of fishes. This information is useful for population management, predator-prey studies, and archaeological research. The relationship between the length of a fish and the length of its otoliths remains unknown for many species of marine fishes in the Pacific Ocean. Therefore, the relationships between fish length and fish weight, and between otolith length and fish length, were developed for 63 species of fishes caught in the eastern North Pacific Ocean. We also summarized similar relationships for 46 eastern North Pacific fish species reported in the literature. The relationship between fish length and otolith length was linear, and most of the variability was explained by a simple least-squares regression (r 2 > 0.700 for 45 of 63 species). The relationship between otolith length and fish length was not significantly different between left and right otoliths for all but one fish species. Images of otoliths from 77 taxa are included to assist in the identification of species. (PDF file contains 38 pages.)
Resumo:
(PDF contains 7 pages.)
Resumo:
(PDF contains 3 pages.)