978 resultados para Ferdinand Maria, Elector of Bavaria, 1636-1679.
Resumo:
We studied the energy and frequency dependence of the Fourier time lags and intrinsic coherence of the kilohertz quasi-periodic oscillations (kHz QPOs) in the neutron-star lowmass X-ray binaries 4U 1608−52 and 4U 1636−53, using a large data set obtained with the Rossi X-ray Timing Explorer. We confirmed that, in both sources, the time lags of the lower kHz QPO are soft and their magnitude increases with energy. We also found that: (i) In 4U 1636−53, the soft lags of the lower kHz QPO remain constant at∼30 μs in the QPO frequency range 500–850 Hz, and decrease to ∼10 μs when the QPO frequency increases further. In 4U 1608−52, the soft lags of the lower kHz QPO remain constant at 40 μs up to 800 Hz, the highest frequency reached by this QPO in our data. (ii) In both sources, the time lags of the upper kHz QPO are hard, independent of energy or frequency and inconsistent with the soft lags of the lower kHz QPO. (iii) In both sources the intrinsic coherence of the lower kHz QPO remains constant at ∼0.6 between 5 and 12 keV, and drops to zero above that energy. The intrinsic coherence of the upper kHz QPO is consistent with being zero across the full energy range. (iv) In 4U 1636−53, the intrinsic coherence of the lower kHz QPO increases from ∼0 at ∼600 Hz to ∼1, and it decreases to ∼0.5 at 920 Hz; in 4U 1608−52, the intrinsic coherence is consistent with the same trend. (v) In both sources the intrinsic coherence of the upper kHz QPO is consistent with zero over the full frequency range of the QPO, except in 4U 1636−53 between 700 and 900 Hz where the intrinsic coherence marginally increases. We discuss our results in the context of scenarios in which the soft lags are either due to reflection off the accretion disc or up-/down-scattering in a hot medium close to the neutron star. We finally explore the connection between, on one hand the time lags and the intrinsic coherence of the kHz QPOs, and on the other the QPOs’ amplitude and quality factor in these two sources.
Resumo:
Toxocariasis, caused most commonly by Toxocara canis, is an important cosmopolitan zoonosis. Paratenic hosts have been employed to provide knowledge regard to the transmission of toxocariasis. Transmammary transmission in murine experimentally infected was observed based on the recovery of larvae from the tissue. The aim of this study was to evaluate the possibility of transmammary transmission of Toxocara canis in rabbits by detecting larvae directly in milk. Seventeen sexually mature virgin white New Zealand female rabbits were divided into two groups. Twelve animals were orally inoculated with 1,000 T. canis embryonated eggs (infected group), and five animals remained uninfected (control group). One month following the infection, the females were mated. Manual collection of 500 ?L of milk from each rabbit was performed on days +7, +14 and +21 of lactation for three consecutive lactations. The recovery of larvae was determined via a centrifuge-sedimentation technique using ether and formalin solutions. ELISA test was run to confirm the production of anti-T. canis antibodies (IgG) by infected rabbits. The presence of larvae was observed in milk samples from 5 (41.7%) of the 12 infected rabbits. The total number of recovered larvae was 20, ranging from 1 to 4 larvae per lactation/rabbit. Larvae were recovered exclusively on days 7 and 14 of lactation. Recovery was verified in different lactations. No significant difference was observed with respect to the number of larvae either in the same lactation period or in different lactation periods. Anti-T. canis antibodies were detected in all infected rabbits. In conclusion, the presence of larvae in rabbit milk samples suggests the possibility of galactogenic transmission of T. canis in paratenic hosts. Moreover, the technique employed in this study allows for the recovery of larvae directly from milk.
Resumo:
When on 26 May 1662 the founding first stone was laid for a new church on the island Nordstrand at the coast of Schleswig, relics of Teresa of Avila (1515-1582) and of the Dutch Carmelite abbess Maria Margaretha ab Angelis (1605-1658) were inserted. This church was built for Dutch dyke builders who were called to reconstruct the island after its destruction by flood in 1634; coming from a Catholic background and from the Dutch Republic which was at war with Spain at that time, the dyke builders and their families were guaranteed religious freedom in the Lutheran duchy of Holstein. In this paper, the reasons for the choice for the Spanish mystic Teresa of Avila and for the Dutch Carmelite abbess Maria Margaretha are discussed. The latter patroness was never beatified but had died in the smell of holiness; after her death several miracles were ascribed to her. It is understandable that migrants brought relics of their appreciated holy persons who would remind them of their homeland. The paper will first shortly introduce the two patronesses of the church. In the second part, the reasons for this choice will be discussed. Behind this translation of relics not only spiritual reasons played a role. The function of the translation of the saints was first to keep up geographical and political connections with the old country (both Spain and the Netherlands), secondly to perpetuate personal-familial relationships (esp. with Maria Margaretha), thirdly to strengthen the confessional identity in a non-Catholic environment. Fourthly the transfer brought a certain model of Christian life and reform to the new place of living, which in the second part of the 17th century became marked as “Jansenist”. The paper shows the transformation of the island into an enclave of Dutch Catholic culture.
Resumo:
Signatur des Originals: S 36/G04451
Resumo:
The microzooplankton grazing dilution experiments were conducted at stations 126, 127, 131 and 133-137, following Landry & Hassett (1982). Seawater samples (whole seawater - WSW) were taken via Niskin bottles mounted on to a CTD Rosette out of the chlorophyll maximum at each station. Four different dilution levels were prepared with WSW and GF/F filtered seawater - 100% WSW, 75% WSW, 50% WSW and 25% WSW. The diluted WSW was filled in 2.4 L polycarbonate bottles (two replicates for every dilution level). Three subsamples (250 - 500 mL depending on in situ chlorophyll) of the 100% WSW were filtered on to GF/F filters (25 mm diameter) and chlorophyll was extracted in 5 mL 96% ethanol for 12-24 hours. Afterwards it was measured fluorometrically before and after the addition of HCl with a Turner fluorometer according to Jespersen and Christoffersen (1987) on board of the ship. In addition, one 250 mL subsample of the 100% WSW was fixed in 2% Lugol (final concentration), to determine the microzooplankton community when back at the Institute for Hydrobiology and Fisheries Science in Hamburg. Also, one 50 mL subsample of the 100% WSW was fixed in 1 mL glutaraldehyde, to quantify bacteria abundance. The 2.4 L bottles were put in black mesh-bags, which reduced incoming radiation to approximately 50% (to minimize chlorophyll bleaching). The bottles were incubated for 24 hours in a tank on deck with flow-through water, to maintain in situ temperature. An additional experiment was carried out to test the effect of temperature on microzooplankton grazing in darkness. Therefore, 100% WSW was incubated in the deck tank and in two temperature control rooms of 5 and 15°C in darkness (two bottles each). The same was done with bottles where copepods were added (five copepods of Calanus finmarchicus in each bottle; males and females were randomly picked and divided onto the bottles). In addition, two 100% WSW bottles with five copepods each were incubated at in situ temperature at 100% light level (without mesh-bags). All experiments were incubated for 24 hours and afterwards two subsamples of each bottle were filtered on to GF/F filters (25 mm diameter); 500 - 1000 mL depending on in situ chlorophyll. One 250 mL subsample of one of the two replicates of each dilution level and each additional experiment (temperature and temperature/copepods) was fixed in 5 mL lugol for microzooplankton determination. One 50 mL subsample of one of the two 100% WSW bottles as well as of one of the additional experiments without copepods was fixed in 1 mL glutaraldehyde for bacteria determination later on. Copepods were fixed in 4% formaldehyde for length measurements and sex determination.