956 resultados para Fauna silvestre
Resumo:
In nests of opossum (Didelphis aurita), localized in palm-trees of the species Attalea indaya Dr., the authors found a new tritatoma, the description of which is being made by Dr. H. LENT. They verified that this triatoma had been naturally infected by Trypanosoma (Schizotrhypanum) cruzy. Two guinea-pigs were subsequently infected by peritoneal inoculation of excrements of this new triatoma. The xenodiagnosis of these guinea-pigs, made with normal nymphas of. T. megistus and T. infestans resulted positive after 25 days. Evidence was obtained of being the opossum (Didelphis) one of the sources infection of the new vector, because several specimens of them were found infected, and also a specimen of D. aurita, which contained trypanosomes with the morphology of T. (S.) cruzy in the peripheral blood.
Resumo:
I - Methods. II - Phytogeographic aspects. III - The communities and botanical associations: a) The lava Pés-Castelo Novo study area. b) The study area at the Pirataquissé farm. c) The Ribeirão da Fortuna study area. IV - Conclusions.
Resumo:
Bd.3 (1903-1904)
Resumo:
The work reported here was carried-out on the invitation of Dr. Henry Kumm, Director of the Rockefeller Foundation, and by appointment from Dr. Henrique Aragão, Director of the Instituto Oswaldo Cruz. It was done during the investigation of sylvan yellow fever, in June 1947, with a view to establishing the phyto-ecological conditions of the county of Passos. The pe¬riod was, however, too short for definite conclusions to be reached. Thanks are due to Dr. O. R. Causey, Chief of Research on Yellow Fever for transpor¬tation and other help. THE REGIONAL VEGETATION. Aerial photographs of the county of Passos shoto that it is covered by three great types of vegetation: Rain Forest, Secondary Pasture Land and Scrub.1 Detailed investigation, however, brings out the fact that these correspond to different seres; furthermore, each type presents not only the specific, characteristics of the biological form dominant for the climate, but also are at various stages, which express HABITATS differing from those of the normal sere. The phytogeographic survey of the region shows that most of it is now covered by secondary pasture land (disclimax) in which Melinis minutiflora, v. "fat grass" (fig. 1), predominates. The mosaic of Rain Forest and of small patches of Scrub reveals the effects of human intervention (BARRETO, H. L. de Mello 1); consequently, all the formations have to be regarded as secon¬dary, though some of them probably include relicts of the primitive climax (WARMING, E. 2). On close examination, the Scrub cannot be considered as the climax, because of the following facts: 1. In the zone of Rain-Forest stretches of forest are present in very varied topographic conditions and the reconstitution of the associations show that man has destroyed an ecological unit (fig. 2). 2. In the zone of Scrub the characteristic patches are small. The banks of rivers and brooks, the valleys and ravine and whatever the soil has retained some humidity, is being invaded fry Rain Forest, which seems to be growing under optimum conditions. The Scrub is thus limited to small belts on the calcareous mountains and on sandy soils with alcaline depths (pH abo¬ve 7) which do not retain enough moisture for the Rain Forest that is progres¬sively restricting the area occupied by Scrub. In view of the topographic and present climatic conditions the Rain Forest must consequently be regarded as the regional climax. The presence of ecologically contradictory elements and associations shows that the real problem is that of the fluctuations of the climate of Passos or even of Minas Geraes during the quaternary and recent periods (DAN-SEREAU, P. : 3), a subject on which little is known and which is tied to the evolution of the climate of Brazil (OLIVEIRA, E. : 4) . The transformation of Scrub into Rain Forest has been - observed by the author before, in other parts of Brazil (VELOSO, PL P.: 5) . It seems probable that the Rio Grande has also greatly influenced the change of the regional vegetation, by invading areas of Scrub and dislocating the limit of the Pluvial climate towards the Canastra Range, though there are remnants of Scrub (postclimax) transfor¬med into secondary open country (disclimax, fig. 5) by human devastation and the setting of fire to the land. VEGETATION GROUPS OF THE PLUVIAL TYPE. The map of the region also shows that at the present time the small patches of forest (whether devasted or intact) occupy the least accessible places, such as valleys, peaks and abrupt slopes (fig. 2). Even these are now being destroyed, so that in the near future this forested region will be en¬tirely reduced to poor pasture land unless energetic measures of conservation are undertaken in time. The Special Service for Prophylaxis against Yellow Fever installed two of their four Stations for the Capture of Mosquitos in this area, one of them at Batatal and the other at Cachoeira, which have separate formations each of them composed of several associations. Other vegetation formations were also analysed, from the synecological point of view, so as to ascertain of which degree of succession their associations belong. These phytosociological sur¬veys give an idea of the principal characteristics of each station. BATATAL FORMATION. The abrupt nature of the valley has rendered this location inappropriate for agricultural purposes since colonial times. The relict of the primitive forest climax saved by this circumstance has expanded gradually to zones whose paedologic conditions favour the eatablishment of mesophilous species. The aerial photograph shows two small stretches of forest, one apparently primi¬tive, the other composed of associations belonging to the subclimax of the subsere. CACHOEIRA FORMATION. Aerial photographs show that this station is crossed by a small river, which divides it into two separate parts. The first, which presents ecological conditions similar, though not identical to those of Batatal, is favoured by topography and apparently remains primitive forest. Though the topography of the other, on the whole, favours the establishment of groups belonging to the normal sere of the climax, is has been partly devastated recently and the aspect of the associations has been completely modified. It was is this part that the four posts for the capturing of mosquitos were set up. The first forest is favoured by deposition of organic matter, washed out from the nearby devasted areas by torrential rains, and thus provides, an appropriate HABITAT for the climax species with certain hygrophilous trends of the ecological quasiclimax type. This association seems to have reached a biological equilibrium, as the dominates. Gallesia gorarema and Cariniana legalis (fig. 10), present an optimum vitality with a vigorous habit and a normal evolutionary cycle. The Cariniantum legalis Gallesiosum equilibrium, corresponds however, to a provisory association, because if the moving of soil by torrential rains should cease it would become possible
Resumo:
The author studied, the horizontal and vertical distribution of most common part of the flora and fauna of the bay of Guanabara at Rio de Janeiro. In this paper the eulittoral, poly, meso and oligohaline regions were localised and studied; and the first chart of its distribution was presented (fig. 2). The salinity of superficial waters was established through determinations based on 30 trips inside the buy for collecting biological materials. Some often 409 determinations which were previous reported together with the present ones served for the eleboration of a salinity map of the bay of Guanabara (fig. 1). This map of fig. 2 shows the geographic locations of the water regions. EULITTORAL WATER REGIME Fig. 3 shows the diagram scheme of fauna and flora of this regime. Sea water salinity 34/1.000, density mean 1.027, transparent greenish waters, sea coast with moderate bursting waves. Limpid sea shore with white sand, gneiss with the big barnacle Tetraclita squamosa var. stalactifera (Lam. Pilsbry. Vertical distributions: barna¬cles layers with a green region in which are present the oyster Ostrea pa-rasitica L., the barnacles Tetraclita, Chthamalus, Balanus tintinnabulum var. tintinnabulum (L.) e var. antillensis Pilsbry in connection with several mollusca and the sea beatle Isopoda Lygia sp. Covered by water and exposed to air by the tidal ritms, there is a stratum of brown animals that is the layer of mussels Mytilus perna L., with others brown and chestnut animals : the Crustacea Pachygrapsus, the little crab Porcellana sp., the stone crab Me-nippe nodifrons Stimpson, the sea stars Echinaster brasiliensis (Mull. & Tr.), Astropecten sp. and the sea anemones Actinia sp. Underneath and never visible there is a subtidal region with green tubular algae of genus Codium and amidst its bunches the sea urchin Lycthchinus variegatus (Agass.) walks and more deeply there are numerous sand-dollars Encope emarginata (Leske). The microplancton of this regime is Ceratiumplancton. POLYHALINE WATER REGIMB Water almost sea water, but directly influenced by continental lands, with rock salts dissolved and in suspension. Salinity: 33 to 32/1.000. This waters endure the actions of the popular nicknamed «water of the hill» (as the waters of mesohaline and oligohaline regimes), becoming suddenly reddish during several hours. That pheno¬menon returns several times in the year and come with great mortality of fishes. In these waters, according to Dr. J. G. FARIA there are species of Protozoa : Peridinea, the Glenoidinium trochoideum St., followed by its satellites which he thinks that they are able to secret toxical substances which can slaughter some species of fishes. In these «waters of the hill» was found a species of Copepoda the Charlesia darwini. In August 1946 the west shore of the Guanabara was plenty of killed fishes occupying a area of 8 feet large by 3 nautical miles of lenght. The enclosure for catching fishes in the rivers mouthes presents in these periods mass dead fishes. The phenomenon of «waters of the hill» appears with the first rains after a period of long dryness. MESOHALINE WATER REGIME Fig. 4 shows the the diagramm scheme. Salt or brackish water from 30 to 17/1.000 salinity, sometimes until 10/1.000. Turbid waters with mud in suspension, chestnut, claveyous waters; shore dirty black mud without waving bursting; the waters are warmer and shorner than those of the polihaline regime. Mangrove shore with the mangrove trees : Rhizophora mangle L., Avicennia sp., Laguncularia sp., and the »cotton tree of sea» Hibiscus sp. Fauna: the great land crab «guaimú» Cardisoma guanhumi Latr., ashore in dry firm land. There is the real land crab Ucides cordatus (L.) in wetting mud and in neigh¬ bourhood of the burrows of the fiddler-crabs of genus Uca. On stones and in the roots of the Rhizophora inhabits the brightly colored mangrove-tree-crab («aratu» Portuguese nickname) Goniopsis cruentata (Latreille) and the sparingly the big oyster Ostrea rhizophorae Guild. Lower is the region of barnacles Balanus amphitrite var. communis Darwin and var. niveus Darwin; Balanus tintinnabulum var. tintinnabulum (L.) doesn't grow in this brackish water; lower is the region of Pelecipoda with prepollency of Venus and Cytherea shell-fishes and the Panopeus mud crab; there are the sea lettuce Ulva and the Gastreropod Cerithium. The Paguridae Clibanarius which lives in the empty shells of Gasteropod molluscs, and the sessile ascidians Tethium plicatum (Lesuer) appears in some seasons. In the bottom there is a black argillous mud where the «one landed shrimps» Alpheus sp. is hidden. OLIGOHALINE WATER REGIME The salinity is lower than 10/1.000. average 8/1.000. There are no barnacles and no sea-beetles Isopods of genus Lygia; on the hay of the shore there are several graminea. This brackish water pervades by mouthes of rivers and penetrates until about 3 kilometers river above. While there is some salt dissolved in water, there are some mud crabs of the genus Uca, Sesarma, Metasesarma and Chasmagnatus. The presence of floating green plants coming from the rivers in the waters of a region indicated the oligohaline waters, with low salt content because when the average of NaCl increases above 8/1.000 these plants die and become rusty colored.
Resumo:
A note on the evolution of cow-pox virus in wild animals of Brazilian fauna. We have tried the sensibility of wild animals of Brazilian fauna to the cow-pox virus. The following specimens were submitted to experiences: Procyon cancrivorus, Hydrochoerus capybara, Cavea aperea, Coendu villosus, Didelphis aurita, Bradypus tridactylus, Euphractus sexcintus, Tamandua tetradactylus, Nasua narica, Dasyprocta aguti and Testudo tabulata. In all these animals, - excepting Bradypus tridactylus - we have obtained an infection with incubation (five days), aspect and duration similar to cow-pox of the laboratorial animals (calf and rabbit). In the Bradypus tridactylus howewer, the incubation was very long. Only after 30 days of inoculation we verified the infection with the formation of vesiculae and postulae.