841 resultados para FINFET STRUCTURES
Resumo:
The Western Alpine Are has been created during the Cretaceous and the Tertiary orogenies. The interference patterns of the Tertiary structures suggest their formation during continental collision of the European and the Adriatic Plates, with an accompanying anticlockwise rotation of the Adriatic indenter. Extensional structures are mainly related to ductile deformation by simple shear. These structures developed at a deep tectonic level, in granitic crustal rocks, at depths in excess of 10 km. In the early Palaeogene period of the Tertiary Orogeny, the main Tertiary nappe emplacement resulted from a NW-thrusting of the Austroalpine, Penninic and Helvetic nappes. Heating of the deep zone of the Upper Cretaceous and Tertiary nappe stack by geothermal heat flow is responsible for the Tertiary regional metamorphism, reaching amphibolite-facies conditions in the Lepontine Gneiss Dome (geothermal gradient 25 degrees C/ km). The Tertiary thrusting occurred mainly during prograde metamorphic conditions with creation of a penetrative NW-SE-oriented stretching lineation, X(1) (finite extension), parallel to the direction of simple shear. Earliest cooling after the culmination of the Tertiary metamorphism, some 38 Ma ago, is recorded by the cooling curves of the Monte Rosa and Mischabel nappes to the west and the Suretta Nappe to the east of the Lepontine Gneiss Dome. The onset of dextral transpression, with a strong extension parallel to the mountain belt, and the oldest S-vergent `'backfolding'' took place some 35 to 30 Ma ago during retrograde amphibolite-facies conditions and before the intrusion of the Oligocene dikes north of the Periadriatic Line. The main updoming of the Lepontine Gneiss Dome started some 32-30 Ma ago with the intrusion of the Bergell tonalites and granodiorites, concomitant with S-vergent backfolding and backthrusting and dextral strike-slip movements along the Tonale and Canavese Lines (Argand's Insubric phase). Subsequently, the center of main updoming migrated slowly to the west, reaching the Simplon region some 20 Ma ago. This was contemporaneous with the westward migration of the Adriatic indenter. Between 20 Ma and the present, the Western Aar Massif-Toce culmination was the center of strong uplift. The youngest S-vergent backfolds, the Glishorn anticline and the Berisal syncline fold the 12 Ma Rb/Sr biotite isochron and are cut by the 11 Ma old Rhone-Simplon Line. The discrete Rhone-Simplon Line represents a late retrograde manifestation in the preexisting ductile Simplon Shear Zone. This fault zone is still active today. The Oligocene-Neogene dextral transpression and extension in the Simplon area were concurrent with thrusting to the northwest of the Helvetic nappes, the Prealpes (35-15 Ma) and with the Jura thin-skinned thrust (11-3 Ma). It was also contemporaneous with thrusting to the south of the Bergamasc (> 35-5 Ma) and Milan thrusts (16-5 Ma).
Resumo:
The expression on a significant number of thymocytes of idiotypic structures (Ti) restricted to HPB-ALL or Jurkat cells is demonstrated. As many as 2-4% of thymocytes were stained with anti-Ti HPB-ALL or anti-Ti Jurkat monoclonal antibodies, when analyzed by flow microfluorometry. Immunohistochemical localization studies performed on frozen thymus specimens of either fetal or pediatric origin indicated a scattered distribution of Ti-positive cells in both the cortex and the medulla. From lysates of 125I-labeled pediatric thymocytes, anti-Ti HPB-ALL and anti-Ti Jurkat monoclonal antibodies precipitated disulfide-linked heterodimers comparable to those precipitated from 125I-labeled HPB-ALL or Jurkat cells as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis.
Resumo:
This paper deals with the problem of semiactive vibration control of civil engineering structures subject to unknown external disturbances (for example, earthquakes, winds, etc.). Two kinds of semiactive controllers are proposed based on the backstepping control technique. The experimental setup used is a 6-story test structure equipped with shear-mode semiactive magnetorheological dampers being installed in the Washington University Structural Control and Earthquake Engineering Laboratory (WUSCEEL). The experimental results obtained have verified the effectiveness of the proposed control algorithms
Resumo:
In this paper, we address this problem through the design of a semiactive controller based on the mixed H2/H∞ control theory. The vibrations caused by the seismic motions are mitigated by a semiactive damper installed in the bottom of the structure. It is meant by semiactive damper, a device that absorbs but cannot inject energy into the system. Sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller that guarantees asymptotic stability and a mixed H2/H∞ performance is then developed. An algorithm is proposed to handle the semiactive nature of the actuator. The performance of the controller is experimentally evaluated in a real-time hybrid testing facility that consists of a physical specimen (a small-scale magnetorheological damper) and a numerical model (a large-scale three-story building)
Resumo:
This short paper addresses the problem of designing a QFT (quantitative feedback theory) based controllers for the vibration reduction in a 6-story building structure equipped with shear-mode magnetorheological dampers. A new methodology is proposed for characterizing the nonlinear hysteretic behavior of the MR damper through the uncertainty template in the Nichols chart. The design procedure for QFT control design is briefly presented
Resumo:
Proteolytic activity is an important virulence factor for Candida albicans (C. albicans). It is attributed to the family of the secreted aspartic proteinases (Saps) from C. albicans with a minimum of 10 members. Saps show controlled expression and regulation for the individual stages of the infection process. Distinct isoenzymes can be responsible for adherence and tissue damage of local infections, while others cause systemic diseases. Earlier, only the structures of Sap2 and Sap3 were known. In our research, we have now succeeded in solving the X-ray crystal structures of the apoenzyme of Sap1 and Sap5 in complex with pepstatin A at 2.05 and 2.5 A resolution, respectively. With the structure of Sap1, we have completed the set of structures of isoenzyme subgroup Sap1-3. Of subgroup Sap4-6, the structure of the enzyme Sap5 is the first structure that has been described up to now. This facilitates comparison of structural details as well as inhibitor binding modes among the different subgroup members. Structural analysis reveals a highly conserved overall secondary structure of Sap1-3 and Sap5. However, Sap5 clearly differs from Sap1-3 by its electrostatic overall charge as well as through structural conformation of its entrance to the active site cleft. Design of inhibitors specific for Sap5 should concentrate on the S4 and S3 pockets, which significantly differ from Sap1-3 in size and electrostatic charge. Both Sap1 and Sap5 seem to play a major part in superficial Candida infections. Determination of the isoenzymes' structures can contribute to the development of new Sap-specific inhibitors for the treatment of superficial infections with a structure-based drug design program.
Resumo:
The objective the present research is try to find some control design strategies, which must be effective and closed to the real operation conditions. As a novel contribution to structural control strategies, the theories of Interval Modal Arithmetic, Backstepping Control and QFT (Qualitative Feedback Theory) will be studied. The steps to follow are to develop first new controllers based on the above theories and then to implement the proposed control strategies to different kind of structures. The report is organized as follows. The Chapter 2 presents the state-of-the-art on structural control systems. The chapter 3 presents the most important open problems found in field of structural control. The exploratory work made by the author, research proposal and working plan are given in the Chapter 4
Resumo:
In colonies of social Hymenoptera (which include all ants, as well as some wasp and bee species), only queens reproduce whereas workers generally perform other tasks. The evolution of worker's reproductive altruism can be explained by kin selection, which states that workers can indirectly transmit copies of their genes by helping the reproduction of relatives. The relatedness between queens and workers may however be low, particularly when there are multiple queens per colony, which limits the transmission of copies of workers genes and increases potential conflicts between colony members. In this thesis, we investigated the link between social structure variations and conflicts, and explored the mechanisms involved in variation of colony queen number in ants. According to kin selection, workers should rear the brood they are most related to. In social Hymenoptera, males are haploid whereas females (workers and queens) are diploid. As a result, workers can be up to three times more related to females than males in some colonies, where they should consequently favour the production of females. In contrast, queens are equally related to daughters and sons in all types of colonies and therefore should favour a balanced sex ratio. In a meta-analysis across all studies of social Hymenoptera, we showed that colony sex ratio is generally largely influenced by workers. Hence, the evolution of social structures where queens and workers are equally related to males and females may contribute to decrease the conflict between the two castes over colony sex ratio. Another conflict between queens and workers can occur over male production. Many species contain workers that still have the ability to lay haploid eggs. In some social structures, workers are on average more related to sons of queens than to sons of other workers. As a result, workers should eliminate worker-laid eggs to favour queen-laid eggs. We showed that in the ant Formica selysi, workers eliminate more worker-laid than queen-laid eggs, independently of colony social structure. These results therefore suggest that worker policing can evolve independently from relatedness, potentially because of costs of worker reproduction at the colony-level. Colony queen number is a key parameter that influences relatedness between group members. Queen body size is generally linked to the success of independent colony foundation by single queens and may influence the number of queens in the new colony. In the ant F. selysi, single-queen colonies produce larger queens than multiple-queen colonies. We showed that this association results from genes or maternal effects transmitted to the eggs. However, we also found that queens produced in colonies of the two social forms did not differ in their general ability to found new colonies independently. Queen body size may also influence queen dispersal ability and constrain small queens to be re-adopted in their original nest after mating at proximity. We tested the acceptance of new queens in another ant species, Formica paralugubris, which has numerous queens per colony. Our results show that workers do not discriminate between nestmate and foreign queens, and more generally accept new queens at a limited rate. To conclude, this thesis shows that mechanisms influencing variation in colony queen number and the influence of these changes on conflict resolution are complex. Data gathered in this thesis therefore constitute a solid background for further research on the evolution and the maintenance of complex organisations in insect societies.
Resumo:
Bordetella pertussis is the bacterial agent of whooping cough in humans. Under iron-limiting conditions, it produces the siderophore alcaligin. Released to the extracellular environment, alcaligin chelates iron, which is then taken up as a ferric alcaligin complex via the FauA outer membrane transporter. FauA belongs to a family of TonB-dependent outer membrane transporters that function using energy derived from the proton motive force. Using an in-house protocol for membrane-protein expression, purification and crystallization, FauA was crystallized in its apo form together with three other TonB-dependent transporters from different organisms. Here, the protocol used to study FauA is described and its three-dimensional structure determined at 2.3 A resolution is discussed.
Resumo:
Projecte de recerca elaborat a partir d’una estada al Max Planck Institute for Human Cognitive and Brain Sciences, Alemanya, entre 2010 i 2012. El principal objectiu d’aquest projecte era estudiar en detall les estructures subcorticals, en concret, el rol dels ganglis basals en control cognitiu durant processament lingüístic i no-lingüístic. Per tal d’assolir una diferenciació minuciosa en els diferents nuclis dels ganglis basals s’utilitzà ressonància magnètica d’ultra-alt camp i alta resolució (7T-MRI). El còrtex prefrontal lateral i els ganglis basals treballant conjuntament per a mitjançar memòria de treball i la regulació “top-down” de la cognició. Aquest circuit regula l’equilibri entre respostes automàtiques i d’alt-ordre cognitiu. Es crearen tres condicions experimentals principals: frases/seqüències noambigües, no-gramatical i ambigües. Les frases/seqüències no-ambigües haurien de provocar una resposta automàtica, mentre les frases/seqüències ambigües i no-gramaticals produïren un conflicte amb la resposta automàtica, i per tant, requeririen una resposta de d’alt-ordre cognitiu. Dins del domini de la resposta de control, la ambigüitat i no-gramaticalitat representen dues dimensions diferents de la resolució de conflicte, mentre per una frase/seqüència temporalment ambigua existeix una interpretació correcte, aquest no és el cas per a les frases/seqüències no-gramaticals. A més, el disseny experimental incloïa una manipulació lingüística i nolingüística, la qual posà a prova la hipòtesi que els efectes són de domini-general; així com una manipulació semàntica i sintàctica que avaluà les diferències entre el processament d’ambigüitat/error “intrínseca” vs. “estructural”. Els resultats del primer experiment (sintax-lingüístic) mostraren un gradient rostroventralcaudodorsal de control cognitiu dins del nucli caudat, això és, les regions més rostrals sostenint els nivells més alts de processament cognitiu
Resumo:
BACKGROUND: The yeast Schizosaccharomyces pombe is frequently used as a model for studying the cell cycle. The cells are rod-shaped and divide by medial fission. The process of cell division, or cytokinesis, is controlled by a network of signaling proteins called the Septation Initiation Network (SIN); SIN proteins associate with the SPBs during nuclear division (mitosis). Some SIN proteins associate with both SPBs early in mitosis, and then display strongly asymmetric signal intensity at the SPBs in late mitosis, just before cytokinesis. This asymmetry is thought to be important for correct regulation of SIN signaling, and coordination of cytokinesis and mitosis. In order to study the dynamics of organelles or large protein complexes such as the spindle pole body (SPB), which have been labeled with a fluorescent protein tag in living cells, a number of the image analysis problems must be solved; the cell outline must be detected automatically, and the position and signal intensity associated with the structures of interest within the cell must be determined. RESULTS: We present a new 2D and 3D image analysis system that permits versatile and robust analysis of motile, fluorescently labeled structures in rod-shaped cells. We have designed an image analysis system that we have implemented as a user-friendly software package allowing the fast and robust image-analysis of large numbers of rod-shaped cells. We have developed new robust algorithms, which we combined with existing methodologies to facilitate fast and accurate analysis. Our software permits the detection and segmentation of rod-shaped cells in either static or dynamic (i.e. time lapse) multi-channel images. It enables tracking of two structures (for example SPBs) in two different image channels. For 2D or 3D static images, the locations of the structures are identified, and then intensity values are extracted together with several quantitative parameters, such as length, width, cell orientation, background fluorescence and the distance between the structures of interest. Furthermore, two kinds of kymographs of the tracked structures can be established, one representing the migration with respect to their relative position, the other representing their individual trajectories inside the cell. This software package, called "RodCellJ", allowed us to analyze a large number of S. pombe cells to understand the rules that govern SIN protein asymmetry. CONCLUSIONS: "RodCell" is freely available to the community as a package of several ImageJ plugins to simultaneously analyze the behavior of a large number of rod-shaped cells in an extensive manner. The integration of different image-processing techniques in a single package, as well as the development of novel algorithms does not only allow to speed up the analysis with respect to the usage of existing tools, but also accounts for higher accuracy. Its utility was demonstrated on both 2D and 3D static and dynamic images to study the septation initiation network of the yeast Schizosaccharomyces pombe. More generally, it can be used in any kind of biological context where fluorescent-protein labeled structures need to be analyzed in rod-shaped cells. AVAILABILITY: RodCellJ is freely available under http://bigwww.epfl.ch/algorithms.html, (after acceptance of the publication).
Resumo:
* The 'in planta' visualization of F-actin in all cells and in all developmental stages of a plant is a challenging problem. By using the soybean heat inducible Gmhsp17.3B promoter instead of a constitutive promoter, we have been able to label all cells in various developmental stages of the moss Physcomitrella patens, through a precise temperature tuning of the expression of green fluorescent protein (GFP)-talin. * A short moderate heat treatment was sufficient to induce proper labeling of the actin cytoskeleton and to allow the visualization of time-dependent organization of F-actin structures without impairment of cell viability. * In growing moss cells, dense converging arrays of F-actin structures were present at the growing tips of protonema cell, and at the localization of branching. Protonema and leaf cells contained a network of thick actin cables; during de-differentiation of leaf cells into new protonema filaments, the thick bundled actin network disappeared, and a new highly polarized F-actin network formed. * The controlled expression of GFP-talin through an inducible promoter improves significantly the 'in planta' imaging of actin.
Resumo:
Background: Recent advances on high-throughput technologies have produced a vast amount of protein sequences, while the number of high-resolution structures has seen a limited increase. This has impelled the production of many strategies to built protein structures from its sequence, generating a considerable amount of alternative models. The selection of the closest model to the native conformation has thus become crucial for structure prediction. Several methods have been developed to score protein models by energies, knowledge-based potentials and combination of both.Results: Here, we present and demonstrate a theory to split the knowledge-based potentials in scoring terms biologically meaningful and to combine them in new scores to predict near-native structures. Our strategy allows circumventing the problem of defining the reference state. In this approach we give the proof for a simple and linear application that can be further improved by optimizing the combination of Zscores. Using the simplest composite score () we obtained predictions similar to state-of-the-art methods. Besides, our approach has the advantage of identifying the most relevant terms involved in the stability of the protein structure. Finally, we also use the composite Zscores to assess the conformation of models and to detect local errors.Conclusion: We have introduced a method to split knowledge-based potentials and to solve the problem of defining a reference state. The new scores have detected near-native structures as accurately as state-of-art methods and have been successful to identify wrongly modeled regions of many near-native conformations.
Resumo:
The transpressional boundary between the Australian and Pacific plates in the central South Island of New Zealand comprises the Alpine Fault and a broad region of distributed strain concentrated in the Southern Alps but encompassing regions further to the east, including the northwest Canterbury Plains. Low to moderate levels of seismicity (e. g., 2 > M 5 events since 1974 and 2 > M 4.0 in 2009) and Holocene sediments offset or disrupted along rare exposed active fault segments are evidence for ongoing tectonism in the northwest plains, the surface topography of which is remarkably flat and even. Because the geology underlying the late Quaternary alluvial fan deposits that carpet most of the plains is not established, the detailed tectonic evolution of this region and the potential for larger earthquakes is only poorly understood. To address these issues, we have processed and interpreted high-resolution (2.5 m subsurface sampling interval) seismic data acquired along lines strategically located relative to extensive rock exposures to the north, west, and southwest and rare exposures to the east. Geological information provided by these rock exposures offer important constraints on the interpretation of the seismic data. The processed seismic reflection sections image a variably thick layer of generally undisturbed younger (i.e., < 24 ka) Quaternary alluvial sediments unconformably overlying an older (> 59 ka) Quaternary sedimentary sequence that shows evidence of moderate faulting and folding during and subsequent to deposition. These Quaternary units are in unconformable contact with Late Cretaceous-Tertiary interbedded sedimentary and volcanic rocks that are highly faulted, folded, and tilted. The lowest imaged unit is largely reflection-free Permian Triassic basement rocks. Quaternary-age deformation has affected all the rocks underlying the younger alluvial sediments, and there is evidence for ongoing deformation. Eight primary and numerous secondary faults as well as a major anticlinal fold are revealed on the seismic sections. Folded sedimentary and volcanic units are observed in the hanging walls and footwalls of most faults. Five of the primary faults represent plausible extensions of mapped faults, three of which are active. The major anticlinal fold is the probable continuation of known active structure. A magnitude 7.1 earthquake occurred on 4 September 2010 near the southeastern edge of our study area. This predominantly right-lateral strike-slip event and numerous aftershocks (ten with magnitudes >= 5 within one week of the main event) highlight the primary message of our paper: that the generally flat and topographically featureless Canterbury Plains is underlain by a network of active faults that have the potential to generate significant earthquakes.
Resumo:
Aquest treball és una revisió d'alguns sistemes de Traducció Automàtica que segueixen l'estratègia de Transfer i fan servir estructures de trets com a eina de representació. El treball s'integra dins el projecte MLAP-9315, projecte que investiga la reutilització de les especificacions lingüístiques del projecte EUROTRA per estàndards industrials.