957 resultados para F6 - Economic Impacts of Globalization
Resumo:
Sustainable transport has become a necessity instead of an option, to address the problems of congestion and urban sprawl, whose effects include increased trip lengths and travel time. A more sustainable form of development, known as Transit Oriented Development (TOD) is presumed to offer sustainable travel choices with reduced need to travel to access daily destinations, by providing a mixture of land uses together with good quality of public transport service, infrastructure for walking and cycling. However, performance assessment of these developments with respect to travel characteristics of their inhabitants is required. This research proposes a five step methodology for evaluating the transport impacts of TODs. The steps for TOD evaluation include pre–TOD assessment, traffic and travel data collection, determination of traffic impacts, determination of travel impacts, and drawing outcomes. Typically, TODs are comprised of various land uses; hence have various types of users. Assessment of characteristics of all user groups is essential for obtaining an accurate picture of transport impacts. A case study TOD, Kelvin Grove Urban Village (KGUV), located 2km of north west of the Brisbane central business district in Australia was selected for implementing the proposed methodology and to evaluate the transport impacts of a TOD from an Australian perspective. The outcomes of this analysis indicated that KGUV generated 27 to 48 percent less traffic compared to standard published rates specified for homogeneous uses. Further, all user groups of KGUV used more sustainable modes of transport compared to regional and similarly located suburban users, with higher trip length for shopping and education trips. Although the results from this case study development support the transport claims of reduced traffic generation and sustainable travel choices by way of TODs, further investigation is required, considering different styles, scales and locations of TODs. The proposed methodology may be further refined by using results from new TODs and a framework for TOD evaluation may be developed.
Resumo:
Sutchi catfish (Pangasianodon hypophthalmus) – known more universally by the Vietnamese name ‘Tra’ is an economically important freshwater fish in the Mekong Delta in Vietnam that constitutes an important food resource. Artificial propagation technology for Tra catfish has only recently been developed along the main branches of the Mekong River where more than 60% of the local human population participate in fishing or aquaculture. Extensive support for catfish culture in general, and that of Tra (P. hypophthalmus) in particular, has been provided by the Vietnamese government to increase both the scale of production and to develop international export markets. In 2006, total Vietnamese catfish exports reached approximately 286,602 metric tons (MT) and were valued at 736.87 $M with a number of large new export destinations being developed. Total value of production from catfish culture has been predicted to increase to approximately USD 1 billion by 2020. While freshwater catfish culture in Vietnam has a promising future, concerns have been raised about long-term quality of fry and the effectiveness of current brood stock management practices, issues that have been largely neglected to date. In this study, four DNA markers (microsatellite loci: CB4, CB7, CB12 and CB13) that were developed specifically for Tra (P. hypophthalmus) in an earlier study were applied to examine the genetic quality of artificially propagated Tra fry in the Mekong Delta in Vietnam. The goals of the study were to assess: (i) how well available levels of genetic variation in Tra brood stock used for artificial propagation in the Mekong Delta of Vietnam (breeders from three private hatcheries and Research Institute of Aquaculture No2 (RIA2) founders) has been conserved; and (ii) whether or not genetic diversity had declined significantly over time in a stock improvement program for Tra catfish at RIA2. A secondary issue addressed was how genetic markers could best be used to assist industry development. DNA was extracted from fins of catfish collected from the two main branches of the Mekong River inf Vietnam, three private hatcheries and samples from the Tra improvement program at RIA2. Study outcomes: i) Genetic diversity estimates for Tra brood stock samples were similar to, and slightly higher than, wild reference samples. In addition, the relative contribution by breeders to fry in commercial private hatcheries strongly suggest that the true Ne is likely to be significantly less than the breeder numbers used; ii) in a stock improvement program for Tra catfish at RIA2, no significant differences were detected in gene frequencies among generations (FST=0.021, P=0.036>0.002 after Bonferroni correction); and only small differences were observed in alleles frequencies among sample populations. To date, genetic markers have not been applied in the Tra catfish industry, but in the current project they were used to evaluate the levels of genetic variation in the Tra catfish selective breeding program at RIA2 and to undertake genetic correlations between genetic marker and trait variation. While no associations were detected using only four loci, they analysis provided training in the practical applications of the use of molecular markers in aquaculture in general, and in Tra culture, in particular.
Resumo:
Australia is currently in the midst of a major resources boom. Resultant growing demands for labour in regional and remote areas have accelerated the recruitment of non resident workers, mostly contractors, who work extended block rosters of 12-hour shifts and are accommodated in work camps, often adjacent to established mining towns. Serious social impacts of these practices, including violence and crime, have generally escaped industry, government and academic scrutiny. This paper highlights some of these impacts on affected regional communities and workers and argues that post-industrial mining regimes serve to mask and privatize these harms and risks, shifting them on to workers, families and communities.
Resumo:
The present study examined experimentally the phenological responses of a range of plant species to rises in temperature. We used the climate-change field protocol of the International Tundra Experiment (ITEX), which measures plant responses to warming of 1 to 2°C inside small open-topped chambers. The field study was established on the Bogong High Plains, Australia, in subalpine open heathlands; the most common treeless plant community on the Bogong High Plains. The study included areas burnt by fire in 2003, and therefore considers the interactive effects of warming and fire, which have rarely been studied in high mountain environments. From November 2003 to March 2006, various phenological phases were monitored inside and outside chambers during the snow-free periods. Warming resulted in earlier occurrence of key phenological events in 7 of the 14 species studied. Burning altered phenology in 9 of 10 species studied, with both earlier and later phenological changes depending on the species. There were no common phenological responses to warming or burning among species of the same family, growth form or flowering type (i.e. early or late-flowering species), when all phenological events were examined. The proportion of plants that formed flower buds was influenced by fire in half of the species studied. The findings support previous findings of ITEX and other warming experiments; that is, species respond individualistically to experimental warming. The inter-year variation in phenological response, the idiosyncratic nature of the responses to experimental warming among species, and an inherent resilience to fire, may result in community resilience to short-term climate change. In the first 3 years of experimental warming, phenological responses do not appear to be driving community-level change. Our findings emphasise the value of examining multiple species in climate-change studies.
Resumo:
Background: During December 2010 and January 2011, torrential rainfall in Queensland resulted in the worst flooding in over 50 years. We carried out a community-based survey to assess the health impacts of this flooding in the city of Brisbane. Methods: A community-based survey was conducted in 12 flood-affected electorates using postal questionnaires. A random sample of residents in these areas was drawn from electoral rolls. Questions examined sociodemographic information, the direct impact of flooding on the household, and perceived flood-related health impacts. Outcome variables included perceived flood-related effects on overall and respiratory health, along with mental health outcomes measured by psychosocial distress, reduced sleep quality and probable post-traumatic stress disorder (PTSD). Multivariable logistic regression was used to examine the association between flooding and health outcome variables, adjusted for current health status and socioeconomic factors. Results: 3000 residents were invited to participate in this survey, with 960 responses (32%). People whose households were directly impacted by flooding had a decrease in perceived overall health (OR 5.3, 95% CI: 2.8–10.2), along with increases in psychological distress (OR 1.9, 1.1–3.5), decreased sleep quality (OR 2.3, 1.2–4.4), and probable PTSD (OR 2.3, 1.2–4.5). Residents were also more likely to increase usage of both tobacco (OR 6.3, 2.4–16.8) and alcohol (OR 7.0, 2.2–22.3) after flooding. Conclusions: There were significant impacts of flood events on residents’ health, in particular psychosocial health. Improved support strategies may need to be integrated into existing disaster management programs to reduce flood‐related health impacts.
Resumo:
Background: During December 2010 and January 2011, torrential rainfall in Queensland resulted in the worst flooding in over 50 years. We carried out a community-based survey to assess the health impacts of this flooding in the city of Brisbane. Methods: A community-based survey was conducted in 12 flood-affected electorates using postal questionnaires. A random sample of residents in these areas was drawn from electoral rolls. Questions examined sociodemographic information, the direct impact of flooding on the household, and perceived flood-related health impacts. Outcome variables included perceived flood-related effects on overall and respiratory health, along with mental health outcomes measured by psychosocial distress, reduced sleep quality and probable post-traumatic stress disorder (PTSD). Multivariable logistic regression was used to examine the association between flooding and health outcome variables, adjusted for current health status and socioeconomic factors. Results: 3000 residents were invited to participate in this survey, with 960 responses (32%). People whose households were directly impacted by flooding had a decrease in perceived overall health (OR 5.3, 95% CI: 2.8–10.2), along with increases in psychological distress (OR 1.9, 1.1–3.5), decreased sleep quality (OR 2.3, 1.2–4.4), and probable PTSD (OR 2.3, 1.2–4.5). Residents were also more likely to increase usage of both tobacco (OR 6.3, 2.4–16.8) and alcohol (OR 7.0, 2.2–22.3) after flooding. Conclusions: There were significant impacts of flood events on residents’ health, in particular psychosocial health. Improved support strategies may need to be integrated into existing disaster management programs to reduce flood-related health impacts.
Resumo:
Crop simulation models have the potential to assess the risk associated with the selection of a specific N fertilizer rate, by integrating the effects of soil-crop interactions on crop growth under different pedo-climatic and management conditions. The objective of this study was to simulate the environmental and economic impact (nitrate leaching and N2O emissions) of a spatially variable N fertilizer application in an irrigated maize field in Italy. The validated SALUS model was run with 5 nitrogen rates scenarios, 50, 100, 150, 200, and 250 kg N ha−1, with the latter being the N fertilization adopted by the farmer. The long-term (25 years) simulations were performed on two previously identified spatially and temporally stable zones, a high yielding and low yielding zone. The simulation results showed that N fertilizer rate can be reduced without affecting yield and net return. The marginal net return was on average higher for the high yield zone, with values ranging from 1550 to 2650 € ha−1 for the 200 N and 1485 to 2875 € ha−1 for the 250 N. N leaching varied between 16.4 and 19.3 kg N ha−1 for the 200 N and the 250 N in the high yield zone. In the low yield zone, the 250 N had a significantly higher N leaching. N2O emissions varied between 0.28 kg N2O ha−1 for the 50 kg N ha−1 rate to a maximum of 1.41 kg N2O ha−1 for the 250 kg N ha−1 rate.
Resumo:
Objective To assess the effects of the 2011 floods in Brisbane, Australia, on residents’ physical and mental health. Methods Residents who had been affected by the floods completed a community-based survey that examined the direct impact of flooding on households and their perceived physical and mental health. Outcome variables included overall and respiratory health and mental health outcomes related to psychological distress, sleep quality, and posttraumatic stress disorder (PTSD). Multivariable logistic regression was used to examine the association between flooding and perceived health outcome variables, adjusted for current health status and sociodemographic factors. Results Residents whose households were directly affected by flooding were more likely to report poor overall (Odds Ratio [OR] 5.3; 95% CI, 2.8-10.1) and respiratory (OR 2.3; 95% CI, 1.1-4.6) health, psychological distress (OR 1.9; 95% CI, 1.1-3.5), poor sleep quality (OR 2.3; 95% CI, 1.2-4.4), and probable PTSD (OR 2.3; 95% CI, 1.2-4.5). Conclusions The 2011 Brisbane floods had significant impact on the physical and psychosocial health of residents. Improved support strategies may need to be integrated into existing disaster management programs to reduce flood-related health impacts, particularly those related to mental health.
Resumo:
With significant population growth experienced in South East Queensland over the past two decades and a high rate of growth expected to continue in coming decades, the Queensland Government is promoting urban consolidation planning policies to manage growth sustainably. Multi-residential buildings will play an important role in facilitating the increased densities which urban consolidation policies imply. However, a major flood event in January 2011 has brought to light the vulnerability of certain types of multi-residential typologies to power outages. The crisis conditions exposed how contemporary building design and construction practices, coupled with regulatory and planning issues, appear to have compromised the resilience and habitability of multi-storey residential buildings. In the greater urban area of Brisbane, Queensland, the debilitating dependence that certain types of apartment buildings have on mains electricity was highlighted by residents’ experiences of the Brisbane River flood disaster, before, during and after the event. This research examined high density residential buildings in West End, Brisbane, an inner city suburb which was severely affected by the flood and is earmarked for significant urban densification under the Brisbane City Plan. Medium-to-high-density residential buildings in the suburb were mapped in flooded and non-flooded locations and a database containing information about the buildings was created. Parameters included date of construction, number of storeys, systems of access and circulation, and potential for access to natural light and ventilation for habitable areas. A series of semi-structured interviews were conducted with residents involved in the owners’ management committees of several buildings to verify information the mapping could not provide. The interviews identified a number of critical systems failures due to power outage which had a significant impact on residents’ wellbeing, comfort and safety. Building services such as lifts, running water, fire alarms, security systems and air-conditioning ceased to operate when power was disconnected to neighbourhoods and buildings in anticipation of rising flood waters. Lack of access to buildings and dwellings, lack of safety, lack of building security, and lack of thermal comfort affected many residents whether or not their buildings were actually subjected to inundation, with some buildings rendered uninhabitable for a prolonged period. The extent of the impact on residents was dramatically influenced by the scale and type of building inhabited, with those dwelling in buildings under a 25m height limit, with a single lift, found to be most affected. The energy-dependency and strong trend of increasing power demands of high-rise buildings is well-documented. Extended electricity outages such as the one brought about by the 2011 flood in Queensland are likely to happen more frequently than the 50-year average of the flood event itself. Electricity blackouts can result from a number of man-made or natural causes, including shortages caused by demand exceeding supply. This paper highlights the vulnerability of energy-dependent buildings to power outages and investigates options for energy security for occupants of multi-storey buildings and makes recommendations to increase resilience and general liveability in multi-residential buildings in the subtropics through design modifications.
Resumo:
Well-designed indoor environments can support people’s health and welfare. In this literature review, we identify the environmental features that affect human health and wellbeing. Environmental characteristics found to influence health outcomes and/or wellbeing included: environmental safety; indoor air quality (e.g. odour and temperature); sound and noise; premises and interior design (e.g. construction materials, viewing nature and experiencing nature, windows versus no windows, light, colours, unit layout and placement of the furniture, the type of room, possibilities to control environmental elements, environmental complexity and sensory simulations, cleanliness, ergonomics and accessibility, ‛‛wayfinding’’); art, and music, among others. Indoor environments that incorporate healing elements can, for instance, reduce anxiety, lower blood pressure, lessen pain and shorten hospital stays.
Resumo:
Cotton is one of the most important irrigated crops in subtropical Australia. In recent years, cotton production has been severely affected by the worst drought in recorded history, with the 2007–08 growing season recording the lowest average cotton yield in 30 years. The use of a crop simulation model to simulate the long-term temporal distribution of cotton yields under different levels of irrigation and the marginal value for each unit of water applied is important in determining the economic feasibility of current irrigation practices. The objectives of this study were to: (i) evaluate the CROPGRO-Cotton simulation model for studying crop growth under deficit irrigation scenarios across ten locations in New South Wales (NSW) and Queensland (Qld); (ii) evaluate agronomic and economic responses to water inputs across the ten locations; and (iii) determine the economically optimal irrigation level. The CROPGRO-Cotton simulation model was evaluated using 2 years of experimental data collected at Kingsthorpe, Qld. The model was further evaluated using data from nine locations between northern NSW and southern Qld. Long-term simulations were based on the prevalent furrowirrigation practice of refilling the soil profile when the plant -available soil water content is<50%. The model closely estimated lint yield for all locations evaluated. Our results showed that the amounts of water needed to maximise profit and maximise yield are different, which has economic and environmental implications. Irrigation needed to maximise profits varied with both agronomic and economic factors, which can be quite variable with season and location. Therefore, better tools and information that consider the agronomic and economic implications of irrigation decisions need to be developed and made available to growers.
Resumo:
There is increasing concern about the impact of employees‟ alcohol and other drug (AOD) consumption on workplace safety and performance, particularly within the construction industry. While most Australian jurisdictions have identified this as a critical safety issue, information is limited regarding the prevalence of AODs in the workplace and there is limited evidential guidance regarding how to effectively and efficiently address such an issue. The current research aims to scientifically evaluate the use of AODs within the Australian construction industry in order to reduce the potential resulting safety and performance impacts and engender a cultural change in the workforce - to render it unacceptable to arrive at a construction workplace with impaired judgement from AODs. The study will adopt qualitative and quantitative methods to firstly evaluate the extent of general AOD use in the industry. Secondly, the development of an appropriate industry policy will adopt a non-punitive and rehabilitative approach developed in consultation with employers and employees across the infrastructure and building sectors, with the aim it be adopted nationally for adoption at the construction workplace. Finally, an industry specific cultural change management program and implementation plan will be developed through a nationally collaborative approach. Final results indicate that a proportion of those sampled in the construction sector may be at risk of hazardous alcohol consumption. A total of 286 respondents (58%) scored above the cut-off cumulative score for risky or hazardous alcohol. Other drug use was also identified as a major issue. Results support the need for evidence-based, preventative educational initiatives that are tailored to the industry. This paper will discuss the final survey and interview results.