935 resultados para Extraction and Processing Industry
Resumo:
In this thesis, I study skin lesion detection and its applications to skin cancer diagnosis. A skin lesion detection algorithm is proposed. The proposed algorithm is based color information and threshold. For the proposed algorithm, several color spaces are studied and the detection results are compared. Experimental results show that YUV color space can achieve the best performance. Besides, I develop a distance histogram based threshold selection method and the method is proven to be better than other adaptive threshold selection methods for color detection. Besides the detection algorithms, I also investigate GPU speed-up techniques for skin lesion extraction and the results show that GPU has potential applications in speeding-up skin lesion extraction. Based on the skin lesion detection algorithms proposed, I developed a mobile-based skin cancer diagnosis application. In this application, the user with an iPhone installed with the proposed application can use the iPhone as a diagnosis tool to find the potential skin lesions in a persons' skin and compare the skin lesions detected by the iPhone with the skin lesions stored in a database in a remote server.
Resumo:
Abstract to be posted.
Resumo:
Absolute quantitation of clinical (1)H-MR spectra is virtually always incomplete for single subjects because the separate determination of spectrum, baseline, and transverse and longitudinal relaxation times in single subjects is prohibitively long. Integrated Processing and Acquisition of Data (IPAD) based on a combined 2-dimensional experimental and fitting strategy is suggested to substantially improve the information content from a given measurement time. A series of localized saturation-recovery spectra was recorded and combined with 2-dimensional prior-knowledge fitting to simultaneously determine metabolite T(1) (from analysis of the saturation-recovery time course), metabolite T(2) (from lineshape analysis based on metabolite and water peak shapes), macromolecular baseline (based on T(1) differences and analysis of the saturation-recovery time course), and metabolite concentrations (using prior knowledge fitting and conventional procedures of absolute standardization). The procedure was tested on metabolite solutions and applied in 25 subjects (15-78 years old). Metabolite content was comparable to previously found values. Interindividual variation was larger than intraindividual variation in repeated spectra for metabolite content as well as for some relaxation times. Relaxation times were different for various metabolite groups. Parts of the interindividual variation could be explained by significant age dependence of relaxation times.
Resumo:
Perceptual integration of sensory input from our two nostrils has received little attention in comparison to lateralized inputs for vision and hearing. Here, we investigated whether a binary odor mixture of eugenol and l-carvone (smells of cloves and caraway) would be perceived differently if presented as a mixture in one nostril (physical mixture), vs. the same two odorants in separate nostrils (dichorhinic mixture). In parallel, we investigated whether the different types of presentation resulted in differences in olfactory event-related potentials (OERP). Psychophysical ratings showed that the dichorhinic mixtures were perceived as more intense than the physical mixtures. A tendency for shift in perceived quality was also observed. In line with these perceptual changes, the OERP showed a shift in latencies and amplitudes for early (more "sensory") peaks P1 and N1 whereas no significant differences were observed for the later (more "cognitive") peak P2. The results altogether suggest that the peripheral level is a site of interaction between odorants. Both psychophysical ratings and, for the first time, electrophysiological measurements converge on this conclusion.
Resumo:
In this study, the development of a new sensitive method for the analysis of alpha-dicarbonyls glyoxal (G) and methylglyoxal (MG) in environmental ice and snow is presented. Stir bar sorptive extraction with in situ derivatization and liquid desorption (SBSE-LD) was used for sample extraction, enrichment, and derivatization. Measurements were carried out using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). As part of the method development, SBSE-LD parameters such as extraction time, derivatization reagent, desorption time and solvent, and the effect of NaCl addition on the SBSE efficiency as well as measurement parameters of HPLC-ESI-MS/MS were evaluated. Calibration was performed in the range of 1–60 ng/mL using spiked ultrapure water samples, thus incorporating the complete SBSE and derivatization process. 4-Fluorobenzaldehyde was applied as internal standard. Inter-batch precision was <12 % RSD. Recoveries were determined by means of spiked snow samples and were 78.9 ± 5.6 % for G and 82.7 ± 7.5 % for MG, respectively. Instrumental detection limits of 0.242 and 0.213 ng/mL for G and MG were achieved using the multiple reaction monitoring mode. Relative detection limits referred to a sample volume of 15 mL were 0.016 ng/mL for G and 0.014 ng/mL for MG. The optimized method was applied for the analysis of snow samples from Mount Hohenpeissenberg (close to the Meteorological Observatory Hohenpeissenberg, Germany) and samples from an ice core from Upper Grenzgletscher (Monte Rosa massif, Switzerland). Resulting concentrations were 0.085–16.3 ng/mL for G and 0.126–3.6 ng/mL for MG. Concentrations of G and MG in snow were 1–2 orders of magnitude higher than in ice core samples. The described method represents a simple, green, and sensitive analytical approach to measure G and MG in aqueous environmental samples.
Resumo:
The paper showcases the field- and lab-documentation system developed for Kinneret Regional Project, an international archaeological expedition to the Northwestern shore of the Sea of Galilee (Israel) under the auspices of the University of Bern, the University of Helsinki, Leiden University and Wofford College. The core of the data management system is a fully relational, server-based database framework, which also includes time-based and static GIS services, stratigraphic analysis tools and fully indexed document/digital image archives. Data collection in the field is based on mobile, hand-held devices equipped with a custom-tailored stand-alone application. Comprehensive three-dimensional documentation of all finds and findings is achieved by means of total stations and/or high-precision GPS devices. All archaeological information retrieved in the field – including tachymetric data – is synched with the core system on the fly and thus immediately available for further processing in the field lab (within the local network) or for post-excavation analysis at remote institutions (via the WWW). Besides a short demonstration of the main functionalities, the paper also presents some of the key technologies used and illustrates usability aspects of the system’s individual components.
Resumo:
An analysis about the effect of carbon enrichment of allylhydridopolycarbosilane SMP10® with divinylbenzene (DVB) as a promising material for electrical conductive micro-electrical mechanical systems (MEMS) is presented. The liquid precursors can be micropipetted and cured in polytetrafluoroethylene (PTFE) molds to produce 14 mm diameter disc shaped samples. The effect of pyrolysis temperature and carbon content on the electrical conductivity is discussed. The addition of 28.7 wt.% of DVB was found to be the optimum amount. Carbon was preserved in the microstructure during pyrolysis and the ceramic yield increased from 77.5 to 80.5 wt.%. The electrical conductivity increased from 10−6 to 1 S/cm depending on the annealing temperature. Furthermore, the ceramic samples obtained with this composition were found to be in many cases crack free or with minimal cracks in contrast with the behavior of pure SMP10. Using the same process we demonstrate that also microsized ceramic samples can be produced.
Resumo:
The chemical and isotopic characterization of porewater residing in the inter- and intragranular pore space of the low-permeability rock matrix is an important component with respect to the site characterization and safety assessment of potential host rocks for a radioactive waste disposal. The chemical and isotopic composition of porewater in such low permeability rocks has to be derived by indirect extraction techniques applied to naturally saturated rock material. In most of such indirect extraction techniques – especially in case of rocks of a porosity below about 2 vol.% – the original porewater concentrations are diluted and need to be back-calculated to in-situ concentrations. This requires a well-defined value for the connected porosity – accessible to different solutes under in-situ conditions. The derivation of such porosity values, as well as solute concentrations, is subject to various perturbations during drilling, core sampling, storage and experiments in the laboratory. The present study aims to demonstrate the feasibility of a variety of these techniques to charac-terize porewater and solute transport in crystalline rocks. The methods, which have been de-veloped during multiple porewater studies in crystalline environments, were applied on four core samples from the deep borehole DH-GAP04, drilled in the Kangerlussuaq area, Southwest Greenland, as part of the joint NWMO–Posiva–SKB Greenland Analogue Project (GAP). Potential artefacts that can influence the estimation of in situ porewater chemistry and isotopes, as well as their controls, are described in detail in this report, using specific examples from borehole DH-GAP04
Resumo:
Prospective memory is the ability to remember an intention at an appropriate moment in the future. Prospective memory tasks can be more or less important. Previously, importance was manipulated by emphasizing the importance of the prospective memory task relative to the ongoing task it was embedded in. This resulted in better prospective memory performance but also ongoing task costs. In the present study, we simply instructed one group of participants that the prospective memory task was important (i.e., absolute importance instruction) and compared them to a group with relative importance instructions and a control group. The results showed that absolute importance lead to an increase in prospective memory performance without enhancing ongoing task costs, whereas relative importance resulted in both increased prospective memory performance and ongoing task costs. Thus, prospective memory can be enhanced without ongoing task costs, which is particularly crucial for safety-work contexts.
Resumo:
DNA interstrand crosslinks (ICLs) are among the most toxic type of damage to a cell. Many ICL-inducing agents are widely used as therapeutic agents, e.g. cisplatin, psoralen. A bettor understanding of the cellular mechanism that eliminates ICLs is important for the improvement of human health. However, ICL repair is still poorly understood in mammals. Using a triplex-directed site-specific ICL model, we studied the roles of mismatch repair (MMR) proteins in ICL repair in human cells. We are also interested in using psoralen-conjugated triplex-forming oligonucleotides (TFOs) to direct ICLs to a specific site in targeted DNA and in the mammalian genomes. ^ MSH2 protein is the common subunit of two MMR recognition complexes, and MutSα and MutSβ. We showed that MSH2 deficiency renders human cell hypersensitive to psoralen ICLs. MMR recognition complexes bind specifically to triplex-directed psoralen ICLs in vitro. Together with the fact that psoralen ICL-induced repair synthesis is dramatically decreased in MSH2 deficient cell extracts, we demonstrated that MSH2 function is critical for the recognition and processing of psoralen ICLs in human cells. Interestingly, lack of MSH2 does not reduce the level of psoralen ICL-induced mutagenesis in human cells, suggesting that MSH2 does not contribute to error-generating repair of psoralen ICLs, and therefore, may represent a novel error-free mechanism for repairing ICLs. We also studied the role of MLH1, anther key protein in MMR, in the processing of psoralen ICLs. MLH1-deficient human cells are more resistant to psoralen plus UVA treatment. Importantly, MLH1 function is not required for the mutagenic repair of psoralen ICLs, suggesting that it is not involved in the error-generating repair of this type of DNA damage in human cells. ^ These are the first data indicating mismatch repair proteins may participate in a relatively error-free mechanism for processing psoralen ICL in human cells. Enhancement of MMR protein function relative to nucleotide excision repair proteins may reduce the mutagenesis caused by DNA ICLs in humans. ^ In order to specifically target ICLs to mammalian genes, we identified novel TFO target sequences in mouse and human genomes. Using this information, many critical mammalian genes can now be targeted by TFOs.^
Resumo:
The paper examines the development and restructuring of the iron and steel industry in Asian countries. Studying countries that have integrated steelworks with large blast furnaces (South Korea, Taiwan, China and India) and countries without (Thailand, Indonesia and Malaysia), the paper shows the difference in the development processes across the countries and across time, and points to the diversity of the development experience of these countries. The paper argues that significant differences in steel production technologies in terms of initial investment and minimum-efficient scale, the changing role of the state, and shifting demand structures in the domestic steel markets of each country have been the important factors that led to the differences in the development path of the steel industry in each country.