950 resultados para Extensible Pluggable Architecture Hydra Data
Resumo:
Epidemiological evidence and in vitro data suggest that COX-2 is a key regulator of accelerated remodeling. Accelerated states of osteoblast and osteoclast activity are regulated by prostaglandins in vitro, but experimental evidence for specific roles of cyclooxygenase-2 (COX-2) and secretory phospholipase A(2) (sPLA(2)) in activated states of remodeling in vivo is lacking. The aim of this study was to determine the effect of specific inhibitors of sPLA(2)-IIa and COX-2 on bone remodeling activated by estrogen deficiency in adult female rats. One hundred and twenty-four adult female Wistar rats were ovariectomized (OVX) or sham-operated. Rats commenced treatment 14 days after surgery with either vehicle, a COX-2 inhibitor (DFU at 0.02 mg/kg/day and 2.0 mg/kg/day) or a sPLA(2)-group-IIa inhibitor (KH064 at 0.4 mg/kg/day and 4.0 mg/kg/day). Treatment continued daily until rats were sacrificed at 70 days or 98 days post-OVX. The right tibiae were harvested, fixed and embedded in methylmethacrylate for structural histomorphometric bone analysis at the proximal tibial metaphysis. The specific COX-2 or sPLA(2) inhibitors prevented ovariectomy-induced (OVX-induced) decreases in trabecular connectivity (P < 0.05); suppressed the acceleration of bone resorption; and maintained bone turnover at SHAM levels following OVX in the rat. The sPLA2 inhibitor significantly suppressed increases in osteoclast surface induced by OVX (P < 0.05), while the effect of COX-2 inhibition was less marked. These findings demonstrate that inhibitors of COX-2 and sPLA(2)-IIa can effectively suppress OVX-induced bone loss in the adult rat by conserving trabecular bone mass and architecture through reduced bone remodeling and decreased resorptive activity. Moreover, we report an important role of sPLA(2)-IIa in osteoclastogenesis that may be independent of the COX-2 metabolic pathway in the OVX rat in vivo. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Mammalian promoters can be separated into two classes, conserved TATA box-enriched promoters, which initiate at a welldefined site, and more plastic, broad and evolvable CpG-rich promoters. We have sequenced tags corresponding to several hundred thousand transcription start sites (TSSs) in the mouse and human genomes, allowing precise analysis of the sequence architecture and evolution of distinct promoter classes. Different tissues and families of genes differentially use distinct types of promoters. Our tagging methods allow quantitative analysis of promoter usage in different tissues and show that differentially regulated alternative TSSs are a common feature in protein-coding genes and commonly generate alternative N termini. Among the TSSs, we identified new start sites associated with the majority of exons and with 3' UTRs. These data permit genome-scale identification of tissue-specific promoters and analysis of the cis-acting elements associated with them.
Resumo:
Our extensive research has indicated that high-school teachers are reluctant to make use of existing instructional educational software (Pollard, 2005). Even software developed in a partnership between a teacher and a software engineer is unlikely to be adopted by teachers outside the partnership (Pollard, 2005). In this paper we address these issues directly by adopting a reusable architectural design for instructional educational software which allows easy customisation of software to meet the specific needs of individual teachers. By doing this we will facilitate more teachers regularly using instructional technology within their classrooms. Our domain-specific software architecture, Interface-Activities-Model, was designed specifically to facilitate individual customisation by redefining and restructuring what constitutes an object so that they can be readily reused or extended as required. The key to this architecture is the way in which the software is broken into small generic encapsulated components with minimal domain specific behaviour. The domain specific behaviour is decoupled from the interface and encapsulated in objects which relate to the instructional material through tasks and activities. The domain model is also broken into two distinct models - Application State Model and Domainspecific Data Model. This decoupling and distribution of control gives the software designer enormous flexibility in modifying components without affecting other sections of the design. This paper sets the context of this architecture, describes it in detail, and applies it to an actual application developed to teach high-school mathematical concepts.
Resumo:
The Internet of Things (IoT) consists of a worldwide “network of networks,” composed by billions of interconnected heterogeneous devices denoted as things or “Smart Objects” (SOs). Significant research efforts have been dedicated to port the experience gained in the design of the Internet to the IoT, with the goal of maximizing interoperability, using the Internet Protocol (IP) and designing specific protocols like the Constrained Application Protocol (CoAP), which have been widely accepted as drivers for the effective evolution of the IoT. This first wave of standardization can be considered successfully concluded and we can assume that communication with and between SOs is no longer an issue. At this time, to favor the widespread adoption of the IoT, it is crucial to provide mechanisms that facilitate IoT data management and the development of services enabling a real interaction with things. Several reference IoT scenarios have real-time or predictable latency requirements, dealing with billions of device collecting and sending an enormous quantity of data. These features create a new need for architectures specifically designed to handle this scenario, hear denoted as “Big Stream”. In this thesis a new Big Stream Listener-based Graph architecture is proposed. Another important step, is to build more applications around the Web model, bringing about the Web of Things (WoT). As several IoT testbeds have been focused on evaluating lower-layer communication aspects, this thesis proposes a new WoT Testbed aiming at allowing developers to work with a high level of abstraction, without worrying about low-level details. Finally, an innovative SOs-driven User Interface (UI) generation paradigm for mobile applications in heterogeneous IoT networks is proposed, to simplify interactions between users and things.
Resumo:
The inclusion of high-level scripting functionality in state-of-the-art rendering APIs indicates a movement toward data-driven methodologies for structuring next generation rendering pipelines. A similar theme can be seen in the use of composition languages to deploy component software using selection and configuration of collaborating component implementations. In this paper we introduce the Fluid framework, which places particular emphasis on the use of high-level data manipulations in order to develop component based software that is flexible, extensible, and expressive. We introduce a data-driven, object oriented programming methodology to component based software development, and demonstrate how a rendering system with a similar focus on abstract manipulations can be incorporated, in order to develop a visualization application for geospatial data. In particular we describe a novel SAS script integration layer that provides access to vertex and fragment programs, producing a very controllable, responsive rendering system. The proposed system is very similar to developments speculatively planned for DirectX 10, but uses open standards and has cross platform applicability. © The Eurographics Association 2007.
Resumo:
In this paper we describe a novel, extensible visualization system currently under development at Aston University. We introduce modern programming methods, such as the use of data driven programming, design patterns, and the careful definition of interfaces to allow easy extension using plug-ins, to 3D landscape visualization software. We combine this with modern developments in computer graphics, such as vertex and fragment shaders, to create an extremely flexible, extensible real-time near photorealistic visualization system. In this paper we show the design of the system and the main sub-components. We stress the role of modern programming practices and illustrate the benefits these bring to 3D visualization. © 2006 Springer-Verlag Berlin Heidelberg.
Resumo:
A novel architecture for microwave/millimeter-wave signal generation and data modulation using a fiber-grating-based distributed feedback laser has been proposed in this letter. For demonstration, a 155.52-Mb/s data stream on a 16.9-GHz subcarrier has been transmitted and recovered successfully. It has been proved that this technology would be of benefit to future microwave data transmission systems.
Resumo:
Almost a decade has passed since the objectives and benefits of autonomic computing were stated, yet even the latest system designs and deployments exhibit only limited and isolated elements of autonomic functionality. In previous work, we identified several of the key challenges behind this delay in the adoption of autonomic solutions, and proposed a generic framework for the development of autonomic computing systems that overcomes these challenges. In this article, we describe how existing technologies and standards can be used to realise our autonomic computing framework, and present its implementation as a service-oriented architecture. We show how this implementation employs a combination of automated code generation, model-based and object-oriented development techniques to ensure that the framework can be used to add autonomic capabilities to systems whose characteristics are unknown until runtime. We then use our framework to develop two autonomic solutions for the allocation of server capacity to services of different priorities and variable workloads, thus illustrating its application in the context of a typical data-centre resource management problem.
Resumo:
Collaborative working with the aid of computers is increasing rapidly due to the widespread use of computer networks, geographic mobility of people, and small powerful personal computers. For the past ten years research has been conducted into this use of computing technology from a wide variety of perspectives and for a wide range of uses. This thesis adds to that previous work by examining the area of collaborative writing amongst groups of people. The research brings together a number of disciplines, namely sociology for examining group dynamics, psychology for understanding individual writing and learning processes, and computer science for database, networking, and programming theory. The project initially looks at groups and how they form, communicate, and work together, progressing on to look at writing and the cognitive processes it entails for both composition and retrieval. The thesis then details a set of issues which need to be addressed in a collaborative writing system. These issues are then followed by developing a model for collaborative writing, detailing an iterative process of co-ordination, writing and annotation, consolidation, and negotiation, based on a structured but extensible document model. Implementation issues for a collaborative application are then described, along with various methods of overcoming them. Finally the design and implementation of a collaborative writing system, named Collaborwriter, is described in detail, which concludes with some preliminary results from initial user trials and testing.
Resumo:
This research was conducted at the Space Research and Technology Centre o the European Space Agency at Noordvijk in the Netherlands. ESA is an international organisation that brings together a range of scientists, engineers and managers from 14 European member states. The motivation for the work was to enable decision-makers, in a culturally and technologically diverse organisation, to share information for the purpose of making decisions that are well informed about the risk-related aspects of the situations they seek to address. The research examined the use of decision support system DSS) technology to facilitate decision-making of this type. This involved identifying the technology available and its application to risk management. Decision-making is a complex activity that does not lend itself to exact measurement or precise understanding at a detailed level. In view of this, a prototype DSS was developed through which to understand the practical issues to be accommodated and to evaluate alternative approaches to supporting decision-making of this type. The problem of measuring the effect upon the quality of decisions has been approached through expert evaluation of the software developed. The practical orientation of this work was informed by a review of the relevant literature in decision-making, risk management, decision support and information technology. Communication and information technology unite the major the,es of this work. This allows correlation of the interests of the research with European public policy. The principles of communication were also considered in the topic of information visualisation - this emerging technology exploits flexible modes of human computer interaction (HCI) to improve the cognition of complex data. Risk management is itself an area characterised by complexity and risk visualisation is advocated for application in this field of endeavour. The thesis provides recommendations for future work in the fields of decision=making, DSS technology and risk management.
Resumo:
A novel architecture for microwave/millimeter-wave signal generation and data modulation using a fiber-grating-based distributed feedback laser has been proposed in this letter. For demonstration, a 155.52-Mb/s data stream on a 16.9-GHz subcarrier has been transmitted and recovered successfully. It has been proved that this technology would be of benefit to future microwave data transmission systems. © 2006 IEEE.
Resumo:
This thesis makes a contribution to the Change Data Capture (CDC) field by providing an empirical evaluation on the performance of CDC architectures in the context of realtime data warehousing. CDC is a mechanism for providing data warehouse architectures with fresh data from Online Transaction Processing (OLTP) databases. There are two types of CDC architectures, pull architectures and push architectures. There is exiguous data on the performance of CDC architectures in a real-time environment. Performance data is required to determine the real-time viability of the two architectures. We propose that push CDC architectures are optimal for real-time CDC. However, push CDC architectures are seldom implemented because they are highly intrusive towards existing systems and arduous to maintain. As part of our contribution, we pragmatically develop a service based push CDC solution, which addresses the issues of intrusiveness and maintainability. Our solution uses Data Access Services (DAS) to decouple CDC logic from the applications. A requirement for the DAS is to place minimal overhead on a transaction in an OLTP environment. We synthesize DAS literature and pragmatically develop DAS that eciently execute transactions in an OLTP environment. Essentially we develop effeicient RESTful DAS, which expose Transactions As A Resource (TAAR). We evaluate the TAAR solution and three pull CDC mechanisms in a real-time environment, using the industry recognised TPC-C benchmark. The optimal CDC mechanism in a real-time environment, will capture change data with minimal latency and will have a negligible affect on the database's transactional throughput. Capture latency is the time it takes a CDC mechanism to capture a data change that has been applied to an OLTP database. A standard definition for capture latency and how to measure it does not exist in the field. We create this definition and extend the TPC-C benchmark to make the capture latency measurement. The results from our evaluation show that pull CDC is capable of real-time CDC at low levels of user concurrency. However, as the level of user concurrency scales upwards, pull CDC has a significant impact on the database's transaction rate, which affirms the theory that pull CDC architectures are not viable in a real-time architecture. TAAR CDC on the other hand is capable of real-time CDC, and places a minimal overhead on the transaction rate, although this performance is at the expense of CPU resources.
Resumo:
The results of an experimental study of retail investors' use of eXtensible Business Reporting Language tagged (interactive) data and PDF format for making investment decisions are reported. The main finding is that data format made no difference to participants' ability to locate and integrate information from statement footnotes to improve investment decisions. Interactive data were perceived by participants as quick and 'accurate', but it failed to facilitate the identification of the adjustment needed to make the ratios accurate for comparison. An important implication is that regulators and software designers should work to reduce user reliance on the comparability of ratios generated automatically using interactive data.