939 resultados para Explicit numerical method
Resumo:
In this work, a new boundary element formulation for the analysis of plate-beam interaction is presented. This formulation uses a three nodal value boundary elements and each beam element is replaced by its actions on the plate, i.e., a distributed load and end of element forces. From the solution of the differential equation of a beam with linearly distributed load the plate-beam interaction tractions can be written as a function of the nodal values of the beam. With this transformation a final system of equation in the nodal values of displacements of plate boundary and beam nodes is obtained and from it, all unknowns of the plate-beam system are obtained. Many examples are analyzed and the results show an excellent agreement with those from the analytical solution and other numerical methods. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The Generalized Finite Element Method (GFEM) is employed in this paper for the numerical analysis of three-dimensional solids tinder nonlinear behavior. A brief summary of the GFEM as well as a description of the formulation of the hexahedral element based oil the proposed enrichment strategy are initially presented. Next, in order to introduce the nonlinear analysis of solids, two constitutive models are briefly reviewed: Lemaitre`s model, in which damage and plasticity are coupled, and Mazars`s damage model suitable for concrete tinder increased loading. Both models are employed in the framework of a nonlocal approach to ensure solution objectivity. In the numerical analyses carried out, a selective enrichment of approximation at regions of concern in the domain (mainly those with high strain and damage gradients) is exploited. Such a possibility makes the three-dimensional analysis less expensive and practicable since re-meshing resources, characteristic of h-adaptivity, can be minimized. Moreover, a combination of three-dimensional analysis and the selective enrichment presents a valuable good tool for a better description of both damage and plastic strain scatterings.
Resumo:
This paper presents a domain boundary element formulation for inelastic saturated porous media with rate-independent behavior for the solid skeleton. The formulation is then applied to elastic-plastic behavior for the solid. Biot`s consolidation theory, extended to include irreversible phenomena is considered and the direct boundary element technique is used for the numerical solution after time discretization by the implicit Euler backward algorithm. The associated nonlinear algebraic problem is solved by the Newton-Raphson procedure whereby the loading/unloading conditions are fully taken into account and the consistent tangent operator defined. Only domain nodes (nodes defined inside the domain) are used to represent all domain values and the corresponding integrals are computed by using an accurate sub-elementation scheme. The developments are illustrated through the Drucker-Prager elastic-plastic model for the solid skeleton and various examples are analyzed with the proposed algorithms. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper deals with the numerical assessment of the influence of parameters such as pre-compression level, aspect ratio, vertical and horizontal reinforcement ratios and boundary conditions on the lateral strength of masonry walls under in-plane loading. The numerical study is performed through the software DIANA (R) based on the Finite Element Method. The validation of the numerical model is carried out from a database of available experimental results on masonry walls tested under cyclic lateral loading. Numerical results revealed that boundary conditions play a central role on the lateral behavior of masonry walls under in-plane loading and determine the influence of level of pre-compression as well as the reinforcement ratio on the wall strength. The lateral capacity of walls decreases with the increase of aspect ratio and with the decrease of pre-compression. Vertical steel bars appear to have almost no influence in the shear strength of masonry walls and horizontal reinforcement only increases the lateral strength of masonry walls if the shear response of the walls is determinant for failure, which is directly related to the boundary conditions. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We consider a class of two-dimensional problems in classical linear elasticity for which material overlapping occurs in the absence of singularities. Of course, material overlapping is not physically realistic, and one possible way to prevent it uses a constrained minimization theory. In this theory, a minimization problem consists of minimizing the total potential energy of a linear elastic body subject to the constraint that the deformation field must be locally invertible. Here, we use an interior and an exterior penalty formulation of the minimization problem together with both a standard finite element method and classical nonlinear programming techniques to compute the minimizers. We compare both formulations by solving a plane problem numerically in the context of the constrained minimization theory. The problem has a closed-form solution, which is used to validate the numerical results. This solution is regular everywhere, including the boundary. In particular, we show numerical results which indicate that, for a fixed finite element mesh, the sequences of numerical solutions obtained with both the interior and the exterior penalty formulations converge to the same limit function as the penalization is enforced. This limit function yields an approximate deformation field to the plane problem that is locally invertible at all points in the domain. As the mesh is refined, this field converges to the exact solution of the plane problem.
Resumo:
A modeling study was completed to develop a methodology that combines the sequencing and finite difference methods for the simulation of a heterogeneous model of a tubular reactor applied in the treatment of wastewater. The system included a liquid phase (convection diffusion transport) and a solid phase (diffusion reaction) that was obtained by completing a mass balance in the reactor and in the particle, respectively. The model was solved using a pilot-scale horizontal-flow anaerobic immobilized biomass (HAIB) reactor to treat domestic sewage, with the concentration results compared with the experimental data. A comparison of the behavior of the liquid phase concentration profile and the experimental results indicated that both the numerical methods offer a good description of the behavior of the concentration along the reactor. The advantage of the sequencing method over the finite difference method is that it is easier to apply and requires less computational time to model the dynamic simulation of outlet response of HAIB.
Resumo:
This paper presents results on a verification test of a Direct Numerical Simulation code of mixed high-order of accuracy using the method of manufactured solutions (MMS). This test is based on the formulation of an analytical solution for the Navier-Stokes equations modified by the addition of a source term. The present numerical code was aimed at simulating the temporal evolution of instability waves in a plane Poiseuille flow. The governing equations were solved in a vorticity-velocity formulation for a two-dimensional incompressible flow. The code employed two different numerical schemes. One used mixed high-order compact and non-compact finite-differences from fourth-order to sixth-order of accuracy. The other scheme used spectral methods instead of finite-difference methods for the streamwise direction, which was periodic. In the present test, particular attention was paid to the boundary conditions of the physical problem of interest. Indeed, the verification procedure using MMS can be more demanding than the often used comparison with Linear Stability Theory. That is particularly because in the latter test no attention is paid to the nonlinear terms. For the present verification test, it was possible to manufacture an analytical solution that reproduced some aspects of an instability wave in a nonlinear stage. Although the results of the verification by MMS for this mixed-order numerical scheme had to be interpreted with care, the test was very useful as it gave confidence that the code was free of programming errors. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
This work presents an analysis of the wavelet-Galerkin method for one-dimensional elastoplastic-damage problems. Time-stepping algorithm for non-linear dynamics is presented. Numerical treatment of the constitutive models is developed by the use of return-mapping algorithm. For spacial discretization we can use wavelet-Galerkin method instead of standard finite element method. This approach allows to locate singularities. The discrete formulation developed can be applied to the simulation of one-dimensional problems for elastic-plastic-damage models. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The results concerning on an experimental and a numerical study related to SFRCP are presented. Eighteen pipes with an internal diameter of 600 mm and fibre dosages of 10, 20 and 40 kg/m(3) were manufactured and tested. Some technological aspects were concluded. Likewise, a numerical parameterized model was implemented. With this model, the simulation of the resistant behaviour of SFRCP can be performed. In this sense, the results experimentally obtained were contrasted with those suggested by means MAP reaching very satisfactory correlations. Taking it into account, it could be said that the numerical model is a useful tool for the optimal design of the SFRCP fibre dosages, avoiding the need of the systematic employment of the test as an indirect design method. Consequently, the use of this model would reduce the overall cost of the pipes and would give fibres a boost as a solution for this structural typology.
Resumo:
The applicability of a meshfree approximation method, namely the EFG method, on fully geometrically exact analysis of plates is investigated. Based on a unified nonlinear theory of plates, which allows for arbitrarily large rotations and displacements, a Galerkin approximation via MLS functions is settled. A hybrid method of analysis is proposed, where the solution is obtained by the independent approximation of the generalized internal displacement fields and the generalized boundary tractions. A consistent linearization procedure is performed, resulting in a semi-definite generalized tangent stiffness matrix which, for hyperelastic materials and conservative loadings, is always symmetric (even for configurations far from the generalized equilibrium trajectory). Besides the total Lagrangian formulation, an updated version is also presented, which enables the treatment of rotations beyond the parameterization limit. An extension of the arc-length method that includes the generalized domain displacement fields, the generalized boundary tractions and the load parameter in the constraint equation of the hyper-ellipsis is proposed to solve the resulting nonlinear problem. Extending the hybrid-displacement formulation, a multi-region decomposition is proposed to handle complex geometries. A criterium for the classification of the equilibrium`s stability, based on the Bordered-Hessian matrix analysis, is suggested. Several numerical examples are presented, illustrating the effectiveness of the method. Differently from the standard finite element methods (FEM), the resulting solutions are (arbitrary) smooth generalized displacement and stress fields. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This work presents, with the aid of the natural approach, an extension of the force density method for the initial shape finding of cable and membrane structures, which leads to the solution of a system of linear equations. This method, here called the natural force density method, preserves the linearity which characterizes the original force density method. At the same time, it overcomes the difficulties that the original procedure presents to cope with irregular triangular finite element meshes. Furthermore, if this method is applied iteratively in the lines prescribed herewith, it leads to a viable initial configuration with a uniform, isotropic plane Cauchy stress state. This means that a minimal surface for the membrane can be achieved through a succession of equilibrated configurations. Several numerical examples illustrate the simplicity and robustness of the method. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The time varying intensity character of a load applied to a structure poses many difficulties in analysis. A remedy to this situation is to substitute a complex pulse shape by a rectangular equivalent one. It has been shown by others that this procedure works well for perfectly plastic elementary structures. This paper applies the concept of equivalent pulse to more complex structures. Special attention is given to the material behavior, which is allowed to be strain rate and strain hardening sensitive. Thanks to the explicit finite element solution, it is shown in this article that blast loads applied to complex structures made of real materials can be substituted by equivalent rectangular loads with both responses being practically the same. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A kinetic theory based Navier-Stokes solver has been implemented on a parallel supercomputer (Intel iPSC Touchstone Delta) to study the leeward flowfield of a blunt nosed delta wing at 30-deg incidence at hypersonic speeds (similar to the proposed HERMES aerospace plane). Computational results are presented for a series of grids for both inviscid and laminar viscous flows at Reynolds numbers of 225,000 and 2.25 million. In addition, comparisons are made between the present and two independent calculations of the some flows (by L. LeToullec and P. Guillen, and S. Menne) which were presented at the Workshop on Hypersonic Flows for Re-entry Problems, Antibes, France, 1991.
Resumo:
In this paper, we propose a fast adaptive importance sampling method for the efficient simulation of buffer overflow probabilities in queueing networks. The method comprises three stages. First, we estimate the minimum cross-entropy tilting parameter for a small buffer level; next, we use this as a starting value for the estimation of the optimal tilting parameter for the actual (large) buffer level. Finally, the tilting parameter just found is used to estimate the overflow probability of interest. We study various properties of the method in more detail for the M/M/1 queue and conjecture that similar properties also hold for quite general queueing networks. Numerical results support this conjecture and demonstrate the high efficiency of the proposed algorithm.
Resumo:
The reconstruction of power industries has brought fundamental changes to both power system operation and planning. This paper presents a new planning method using multi-objective optimization (MOOP) technique, as well as human knowledge, to expand the transmission network in open access schemes. The method starts with a candidate pool of feasible expansion plans. Consequent selection of the best candidates is carried out through a MOOP approach, of which multiple objectives are tackled simultaneously, aiming at integrating the market operation and planning as one unified process in context of deregulated system. Human knowledge has been applied in both stages to ensure the selection with practical engineering and management concerns. The expansion plan from MOOP is assessed by reliability criteria before it is finalized. The proposed method has been tested with the IEEE 14-bus system and relevant analyses and discussions have been presented.