941 resultados para Euler Zahl, Irreduzible symplektische Mannigfaltigkeit, Lagrangefaserung, Modulraum
Resumo:
A numerical study on shocked flows induced by a supersonic projectile moving in tubes is described in this paper. The dispersion-controlled scheme was adopted to solve the Euler equations implemented with moving boundary conditions. Four test cases were carried out in the present study: the first two cases are for validation of numerical algorithms and verification of moving boundary conditions, and the last two cases are for investigation into wave dynamic processes induced by the projectile moving at Mach numbers of M-p = 2.0 and 2.4, respectively, in a short time duration after the projectile was released from a shock tube into a big chamber. It was found that complex shock phenomena exist in the shocked flow, resulting from shock-wave/projectile interaction, shock-wave focusing, shock-wave reflection and shock-wave/contact-surface interactions, from which turbulence and vortices may be generated. This is a fundamental study on complex shock phenomena, and is also a useful investigation for understanding on shocked flows in the ram accelerator that may provide a highly efficient facility for launching hypersonic projectiles.
Resumo:
应用频散可控耗散差分格式,求解具有化学反应项的Euler方程,探讨了热射流起爆可燃混合气缩短DDT过程的物理机制.数值研究模拟了不同条件下的起爆过程,从氢氧链式反应出发详细分析了氢氧爆轰直接起爆的SWACER(能量释放而形成激波或压缩波的相干放大)机制的建立条件,讨论了热射流起爆存在超临界、临界和亚临界三种直接起爆机制.
Resumo:
应用DCD频散控制激波捕捉格式,求解二维、多组分、带有化学反应的Euler方程组,数值模拟了准定常强激波的马赫反射问题。研究结果表明:与经典马赫反射理论相比,在强激波条件下,激波诱导的气体分子振动激发和化学反应使马赫反射的三波点轨迹角变小、马赫杆高度变低、楔顶附体激波倾角变小;马赫杆的相对突出量随入射激波马赫数和楔角的增大而增大,而气体分子的振动、离解等真实气体效应能进一步加剧马赫杆的向前突出。
Resumo:
An improved two-dimensional space-time conservation element and solution element ( CE/ SE) method with second-order accuracy is proposed, examined and extended to simulate the detonation propagations using detailed chemical reaction models. The numerical results of planar and cellular detonation are compared with corresponding results by the Chapman-Jouguet theory and experiments, and prove that the method is a new reliable way for numerical simulations of detonation propagation.
Resumo:
Cylindrical cellular detonation is numerically investigated by solving two-dimensional reactive Euler equations with a finite volume method on a two-dimensional self-adaptive unstructured mesh. The one-step reversible chemical reaction model is applied to simplify the control parameters of chemical reaction. Numerical results demonstrate the evolution of cellular cell splitting of cylindrical cellular detonation explored in experimentas. Split of cellular structures shows different features in the near-field and far-field from the initiation zone. Variation of the local curvature is a key factor in the behavior of cell split of cylindrical cellular detonation in propagation. Numerical results show that split of cellular structures comes from the self-organization of transverse waves corresponding to the development of small disturbances along the detonation front related to detonation instability.
Resumo:
Cellular cell pattern evolution of cylindrically-diverging detonations is numerically simulated successfully by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. From the simulation, three cell bifurcation modes are observed during the evolution and referred to as concave front focusing, kinked and wrinkled wave front instability, and self-merging of cellular cells. Numerical research demonstrates that the wave front expansion resulted from detonation front diverging plays a major role in the cellular cell bifurcation, which can disturb the nonlinearly self-sustained mechanism of detonations and finally lead to cell bifurcations.
Resumo:
We present a systematical numerical study of the effects of adiabatic exponent gamma on Richtmyer-Meshkov instability (RMI) driven by cylindrical shock waves, based on the gamma model for the multi-component problems and numerical simulation with high-order and high-resolution method for compressible Euler equations. The results show that the RMI of different gamma across the interface exhibits different evolution features with the case of single gamma. Moreover, the large gamma can hold back the development of nonlinear structures, such as spikes and bubbles.
Resumo:
本文根据来流马赫数M∞选取坐标变换函数,将M∞→1时的低超声速回球绕流前体流场变换到矩形的计算区域,忽略粘性影响,采用时间相关法,用TVD有限差分格式求Euler方程的定常解,得到了M∞=1.05、1.01和1.005的流场分布。结果与弹道靶的实验吻合较好
Resumo:
用二维流体弹塑性体模型和Euler算法,完成了粉末爆炸烧结的数值模拟;给出了爆炸烧结 过程中密度分布和压力分布;研究了炸药和粉末参数对爆炸烧结的影响;讨论了几种实验装置设计方案的效果。数值模拟和实验结果作了比较,结果令人满意。
Resumo:
在前人工作的基础上, 提出了干旱区陆气水热交换土壤分层模式, 分析了数学模型中温度变化与水分运动分层的物理原因, 详细分计了气候状况对地表面能量交换的影响, 改进了强迫恢复法, 提出了有限差分析算中的具有二阶精度的Euler隐式格式, 采用新的计算净辐射、地表温度、土壤蒸发及水分变化的计算公式, 尽量减少对测量数据的依赖性, 使模式更趋于实用。以此模式对新疆塔里木盆地阿克苏水平衡试验站地区的土壤、植被、大气间水热交换过程进行了数值摸拟, 并与其他计算方法及实测值进行了比较, 模拟 结果与实测值吻合较好。
Resumo:
为克服涡旋法不能精确预计物体附近小尺度流动结构的理论缺陷,减少高Reynolds数流动N-S方程差分解的困难,本文提出一种区域分解、杂交耦合N-S方程有限差分解及涡旋法的新的数值模型和理论方法.将流场分解为内外两区,在靠近物体表面、范围为O(R)的内区进行N-S方程有限差分解,外区作Lagrange-Euler涡旋法解,建立了分区流动的联结、耦合条件,给出了杂交耦合求解的数值计算方法.用本方法作了Re=10~2,10~3的圆柱绕流计算,考察了区域交界面位置变化时解的稳定性.与全场N-S方程解及实验结果的比较表明本文方法能精确预计流动分离及近场流动的详细结构,并可有效地计算流动的总体特性,且比全场N-S方程解显著节省机时和计算量.
Resumo:
采用Bermin的孔洞成核的局部应力准则以及Euler坐标系下大应变有限元方法,分析了平面应变条件下二相粒子与基体在三种不同的界面结合强度下的宏观材料的力学行为.
Resumo:
本文从流场中空间和时间的尺度分析及流体力学基本方程组(BEFM)中诸项的量级分析出发,提出了BEFM的层次结构理论,表明:当特征雷诺数Re>l、且一坐标方向的长度尺度大于其它坐标方向的长度尺度吋,按照BEFM中诸项的量级关系,形成从Euler方程到 BEFM 和从边界层方程到 BEFM 的两支层次结构,文中以二维可压缩流动和不可压缩轴对称射流为例说明了两支层次结构的关系和特点,分析了诸层次方程组的特征、次特征(Subcharacteristics)以及它们的数学性质,并把诸层次方程组与已有的诸简化Navier-Stakes方程组(SNSE)作了对照比较。
Resumo:
本文在文献[1]的基础上,按照流场中长度尺度分布,惯性项与粘性项相对大小及数量级简化基本方程和划分流动区域的原则,给出:(1)可压缩绕球粘性流和射流的简化Navier-Stokes(NS)方程的层次结构和诸简化NS方程(SNSE),表明从边界层方程到NS方程和从Euler方程到NS方程的层次结构均包含十多种SNSE,但就SNSE的数学特征而言证明只有椭圆型,扩散抛物化和抛物型三类;(2)扩散抛物化方程(DPE)的数学特征与Euler方程一致,力学上表示扰动通过“压力梯度项”向上游传播,高阶扩散项“规定的”椭圆型下游效应可以忽略,故判断诸DPE优劣的标准应看能否准确计算压力场。(3)提出粘性流的多层结构模型,对绕固壁附近的流动为三层,即粘性层、过渡层和无粘层,给出了分层的准则;适用于三层的最简单和最重要的SNSE分别为边界层方程、诸层匹配(LsM)-SNSE和Euler方程;LsM-SNSE同时适用于三层、即适用于全流场,并可准确计算压力场。LsM-SNSE把两层、即内外层匹配SNSE推广为多层。(4)对平板绕流,给出附着流及分离流的新的三层结构,阐明了附着流三层向分离流三层过渡的力学特征。
Resumo:
本文将国际上流行的两点张量法及 Lagrange 描写方法统一起来。运用虚功原理及张量变换得到了 Lagrangian 坐标系及 Euler 坐标系中的应力率平衡方程以及与之等价的变分方程;同时推导出塑性大变形三维有限元公式。作为特例又导出二维平面应变及平面应力的有限元公式。