931 resultados para Error estimator


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flow in the world's oceans occurs at a wide range of spatial scales, from a fraction of a metre up to many thousands of kilometers. In particular, regions of intense flow are often highly localised, for example, western boundary currents, equatorial jets, overflows and convective plumes. Conventional numerical ocean models generally use static meshes. The use of dynamically-adaptive meshes has many potential advantages but needs to be guided by an error measure reflecting the underlying physics. A method of defining an error measure to guide an adaptive meshing algorithm for unstructured tetrahedral finite elements, utilizing an adjoint or goal-based method, is described here. This method is based upon a functional, encompassing important features of the flow structure. The sensitivity of this functional, with respect to the solution variables, is used as the basis from which an error measure is derived. This error measure acts to predict those areas of the domain where resolution should be changed. A barotropic wind driven gyre problem is used to demonstrate the capabilities of the method. The overall objective of this work is to develop robust error measures for use in an oceanographic context which will ensure areas of fine mesh resolution are used only where and when they are required. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the applications of capture–recapture methods to human populations. Capture–recapture methods are commonly used in estimating the size of wildlife populations but can also be used in epidemiology and social sciences, for estimating prevalence of a particular disease or the size of the homeless population in a certain area. Here we focus on estimating the prevalence of infectious diseases. Several estimators of population size are considered: the Lincoln–Petersen estimator and its modified version, the Chapman estimator, Chao’s lower bound estimator, the Zelterman’s estimator, McKendrick’s moment estimator and the maximum likelihood estimator. In order to evaluate these estimators, they are applied to real, three-source, capture-recapture data. By conditioning on each of the sources of three source data, we have been able to compare the estimators with the true value that they are estimating. The Chapman and Chao estimators were compared in terms of their relative bias. A variance formula derived through conditioning is suggested for Chao’s estimator, and normal 95% confidence intervals are calculated for this and the Chapman estimator. We then compare the coverage of the respective confidence intervals. Furthermore, a simulation study is included to compare Chao’s and Chapman’s estimator. Results indicate that Chao’s estimator is less biased than Chapman’s estimator unless both sources are independent. Chao’s estimator has also the smaller mean squared error. Finally, the implications and limitations of the above methods are discussed, with suggestions for further development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear adjustment toward long-run price equilibrium relationships in the sugar-ethanol-oil nexus in Brazil is examined. We develop generalized bivariate error correction models that allow for cointegration between sugar, ethanol, and oil prices, where dynamic adjustments are potentially nonlinear functions of the disequilibrium errors. A range of models are estimated using Bayesian Monte Carlo Markov Chain algorithms and compared using Bayesian model selection methods. The results suggest that the long-run drivers of Brazilian sugar prices are oil prices and that there are nonlinearities in the adjustment processes of sugar and ethanol prices to oil price but linear adjustment between ethanol and sugar prices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diebold and Lamb (1997) argue that since the long-run elasticity of supply derived from the Nerlovian model entails a ratio of random variables, it is without moments. They propose minimum expected loss estimation to correct this problem but in so-doing ignore the fact that a non white-noise-error is implicit in the model. We show that, as a consequence the estimator is biased and demonstrate that Bayesian estimation which fully accounts for the error structure is preferable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proportion estimators are quite frequently used in many application areas. The conventional proportion estimator (number of events divided by sample size) encounters a number of problems when the data are sparse as will be demonstrated in various settings. The problem of estimating its variance when sample sizes become small is rarely addressed in a satisfying framework. Specifically, we have in mind applications like the weighted risk difference in multicenter trials or stratifying risk ratio estimators (to adjust for potential confounders) in epidemiological studies. It is suggested to estimate p using the parametric family (see PDF for character) and p(1 - p) using (see PDF for character), where (see PDF for character). We investigate the estimation problem of choosing c 0 from various perspectives including minimizing the average mean squared error of (see PDF for character), average bias and average mean squared error of (see PDF for character). The optimal value of c for minimizing the average mean squared error of (see PDF for character) is found to be independent of n and equals c = 1. The optimal value of c for minimizing the average mean squared error of (see PDF for character) is found to be dependent of n with limiting value c = 0.833. This might justifiy to use a near-optimal value of c = 1 in practice which also turns out to be beneficial when constructing confidence intervals of the form (see PDF for character).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the case of a multicenter trial in which the center specific sample sizes are potentially small. Under homogeneity, the conventional procedure is to pool information using a weighted estimator where the weights used are inverse estimated center-specific variances. Whereas this procedure is efficient for conventional asymptotics (e. g. center-specific sample sizes become large, number of center fixed), it is commonly believed that the efficiency of this estimator holds true also for meta-analytic asymptotics (e.g. center-specific sample size bounded, potentially small, and number of centers large). In this contribution we demonstrate that this estimator fails to be efficient. In fact, it shows a persistent bias with increasing number of centers showing that it isnot meta-consistent. In addition, we show that the Cochran and Mantel-Haenszel weighted estimators are meta-consistent and, in more generality, provide conditions on the weights such that the associated weighted estimator is meta-consistent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The jackknife method is often used for variance estimation in sample surveys but has only been developed for a limited class of sampling designs.We propose a jackknife variance estimator which is defined for any without-replacement unequal probability sampling design. We demonstrate design consistency of this estimator for a broad class of point estimators. A Monte Carlo study shows how the proposed estimator may improve on existing estimators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The present paper investigates the question of a suitable basic model for the number of scrapie cases in a holding and applications of this knowledge to the estimation of scrapie-ffected holding population sizes and adequacy of control measures within holding. Is the number of scrapie cases proportional to the size of the holding in which case it should be incorporated into the parameter of the error distribution for the scrapie counts? Or, is there a different - potentially more complex - relationship between case count and holding size in which case the information about the size of the holding should be better incorporated as a covariate in the modeling? Methods: We show that this question can be appropriately addressed via a simple zero-truncated Poisson model in which the hypothesis of proportionality enters as a special offset-model. Model comparisons can be achieved by means of likelihood ratio testing. The procedure is illustrated by means of surveillance data on classical scrapie in Great Britain. Furthermore, the model with the best fit is used to estimate the size of the scrapie-affected holding population in Great Britain by means of two capture-recapture estimators: the Poisson estimator and the generalized Zelterman estimator. Results: No evidence could be found for the hypothesis of proportionality. In fact, there is some evidence that this relationship follows a curved line which increases for small holdings up to a maximum after which it declines again. Furthermore, it is pointed out how crucial the correct model choice is when applied to capture-recapture estimation on the basis of zero-truncated Poisson models as well as on the basis of the generalized Zelterman estimator. Estimators based on the proportionality model return very different and unreasonable estimates for the population sizes. Conclusion: Our results stress the importance of an adequate modelling approach to the association between holding size and the number of cases of classical scrapie within holding. Reporting artefacts and speculative biological effects are hypothesized as the underlying causes of the observed curved relationship. The lack of adjustment for these artefacts might well render ineffective the current strategies for the control of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the applications of capture-recapture methods to human populations. Capture-recapture methods are commonly used in estimating the size of wildlife populations but can also be used in epidemiology and social sciences, for estimating prevalence of a particular disease or the size of the homeless population in a certain area. Here we focus on estimating the prevalence of infectious diseases. Several estimators of population size are considered: the Lincoln-Petersen estimator and its modified version, the Chapman estimator, Chao's lower bound estimator, the Zelterman's estimator, McKendrick's moment estimator and the maximum likelihood estimator. In order to evaluate these estimators, they are applied to real, three-source, capture-recapture data. By conditioning on each of the sources of three source data, we have been able to compare the estimators with the true value that they are estimating. The Chapman and Chao estimators were compared in terms of their relative bias. A variance formula derived through conditioning is suggested for Chao's estimator, and normal 95% confidence intervals are calculated for this and the Chapman estimator. We then compare the coverage of the respective confidence intervals. Furthermore, a simulation study is included to compare Chao's and Chapman's estimator. Results indicate that Chao's estimator is less biased than Chapman's estimator unless both sources are independent. Chao's estimator has also the smaller mean squared error. Finally, the implications and limitations of the above methods are discussed, with suggestions for further development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theta-logistic is a widely used generalisation of the logistic model of regulated biological processes which is used in particular to model population regulation. Then the parameter theta gives the shape of the relationship between per-capita population growth rate and population size. Estimation of theta from population counts is however subject to bias, particularly when there are measurement errors. Here we identify factors disposing towards accurate estimation of theta by simulation of populations regulated according to the theta-logistic model. Factors investigated were measurement error, environmental perturbation and length of time series. Large measurement errors bias estimates of theta towards zero. Where estimated theta is close to zero, the estimated annual return rate may help resolve whether this is due to bias. Environmental perturbations help yield unbiased estimates of theta. Where environmental perturbations are large, estimates of theta are likely to be reliable even when measurement errors are also large. By contrast where the environment is relatively constant, unbiased estimates of theta can only be obtained if populations are counted precisely Our results have practical conclusions for the design of long-term population surveys. Estimation of the precision of population counts would be valuable, and could be achieved in practice by repeating counts in at least some years. Increasing the length of time series beyond ten or 20 years yields only small benefits. if populations are measured with appropriate accuracy, given the level of environmental perturbation, unbiased estimates can be obtained from relatively short censuses. These conclusions are optimistic for estimation of theta. (C) 2008 Elsevier B.V All rights reserved.