922 resultados para Error Correction Coding, Error Resilience, MPEG-4, Video Coding
Resumo:
Performing experiments on small-scale quantum computers is certainly a challenging endeavor. Many parameters need to be optimized to achieve high-fidelity operations. This can be done efficiently for operations acting on single qubits, as errors can be fully characterized. For multiqubit operations, though, this is no longer the case, as in the most general case, analyzing the effect of the operation on the system requires a full state tomography for which resources scale exponentially with the system size. Furthermore, in recent experiments, additional electronic levels beyond the two-level system encoding the qubit have been used to enhance the capabilities of quantum-information processors, which additionally increases the number of parameters that need to be controlled. For the optimization of the experimental system for a given task (e.g., a quantum algorithm), one has to find a satisfactory error model and also efficient observables to estimate the parameters of the model. In this manuscript, we demonstrate a method to optimize the encoding procedure for a small quantum error correction code in the presence of unknown but constant phase shifts. The method, which we implement here on a small-scale linear ion-trap quantum computer, is readily applicable to other AMO platforms for quantum-information processing.
Resumo:
We quantify the error statistics and patterning effects in a 5x 40 Gbit/s WDM RZ-DBPSK SMF/DCF fibre link using hybrid Raman/EDFA amplification. We propose an adaptive constrained coding for the suppression of errors due to patterning effects. It is established, that this coding technique can greatly reduce the bit error rate (BER) value even for large BER (BER > 101). The proposed approach can be used in the combination with the forward error correction schemes (FEC) to correct the errors even when real channel BER is outside the FEC workspace.
Resumo:
Situational awareness is achieved naturally by the human senses of sight and hearing in combination. Automatic scene understanding aims at replicating this human ability using microphones and cameras in cooperation. In this paper, audio and video signals are fused and integrated at different levels of semantic abstractions. We detect and track a speaker who is relatively unconstrained, i.e., free to move indoors within an area larger than the comparable reported work, which is usually limited to round table meetings. The system is relatively simple: consisting of just 4 microphone pairs and a single camera. Results show that the overall multimodal tracker is more reliable than single modality systems, tolerating large occlusions and cross-talk. System evaluation is performed on both single and multi-modality tracking. The performance improvement given by the audio–video integration and fusion is quantified in terms of tracking precision and accuracy as well as speaker diarisation error rate and precision–recall (recognition). Improvements vs. the closest works are evaluated: 56% sound source localisation computational cost over an audio only system, 8% speaker diarisation error rate over an audio only speaker recognition unit and 36% on the precision–recall metric over an audio–video dominant speaker recognition method.
Resumo:
Contribution to a roundtable on the 70th anniversary of the publication of W. E. B. DuBois's classic study of US slave emancipation, Black Reconstruction, 1860-1880, including original research on the context in which the book was launched and reflections on its impact on the recent historiography of the American Civil War and its aftermath.
Resumo:
En este trabajo se hace una reflexión crítica acerca de los errores en el uso y manejo de los números racionales e irracionales, en estudiantes del grado noveno de dos instituciones educativas de Antioquia, y las consecuentes dificultades que estos generan en la construcción de los números reales, se hace necesaria para detectarlos, identificarlos y categorizarlos de manera sistemática con la taxonomía realizada por Radatz, esto con el propósito de generar reflexiones en vía de la comprensión del aprendizaje y de la enseñanza de los mismos, en la etapa escolar y de futuras propuestas didácticas. La reflexión se fundamenta en la noción de obstáculo epistemológico dada por Gastón Bachelard y extrapolada a la Didáctica de la matemática por Guy Brousseau y Luis Rico entre otros, dando cuenta de lo problemático que resulta el aprendizaje de los números racionales e irracionales, no como resultado de la incapacidad o ignorancia manifiesta en los estudiantes; sino más bien, como evidencia de posibles obstáculos epistemológicos, propios de la construcción conceptual de dichos números, que pueden ser rastreados a lo largo de la historia y que fueron detectados en el presente trabajo por errores repetitivos y persistentes en el uso que hacen los estudiantes de ellos cuando realizan actividades específicas con ellos en el aula de clase, sin descartar que en muchas ocasiones se encuentran entremezclados con obstáculos de tipo didáctico.
Resumo:
This article is concerned with the numerical detection of bifurcation points of nonlinear partial differential equations as some parameter of interest is varied. In particular, we study in detail the numerical approximation of the Bratu problem, based on exploiting the symmetric version of the interior penalty discontinuous Galerkin finite element method. A framework for a posteriori control of the discretization error in the computed critical parameter value is developed based upon the application of the dual weighted residual (DWR) approach. Numerical experiments are presented to highlight the practical performance of the proposed a posteriori error estimator.
Resumo:
Objetivo: Valorar cómo influyen las características personales y laborales de los profesionales de enfermería en el error asistencial en hospitalización. Método: Estudio descriptivo transversal realizado en 254 enfermeros de los hospitales públicos de Zaragoza, España. Se administró un cuestionario que contenía preguntas sobre los datos sociodemográficos y laborales del profesional y el error sanitario. Resultados: La muestra estuvo formada predominantemente por mujeres (un 88,6%) con una edad media de 37,4 años. El 45,2% tiene una experiencia profesional menor de 10 años, existiendo un alto índice de movilidad en el puesto de trabajo. Existe una asociación entre la edad, el sexo, la movilidad en el servicio hospitalario y el número de errores cometidos (p<0,05). La sobrecarga laboral y la presión por parte de familiares y pacientes son los factores del entorno laboral que más influyen en el momento de cometer un error asistencial. Conclusiones: Las tasas de error en la práctica enfermera hospitalaria están influenciadas por las características del trabajador y el entorno laboral. Para disminuir su frecuencia habrá que proporcionar a los profesionales la formación adecuada al servicio y prevenir los factores de riesgo modificables como el exceso de cargas de trabajo y la presión del entorno social laboral.
Resumo:
In the last few years there has been a great development of techniques like quantum computers and quantum communication systems, due to their huge potentialities and the growing number of applications. However, physical qubits experience a lot of nonidealities, like measurement errors and decoherence, that generate failures in the quantum computation. This work shows how it is possible to exploit concepts from classical information in order to realize quantum error-correcting codes, adding some redundancy qubits. In particular, the threshold theorem states that it is possible to lower the percentage of failures in the decoding at will, if the physical error rate is below a given accuracy threshold. The focus will be on codes belonging to the family of the topological codes, like toric, planar and XZZX surface codes. Firstly, they will be compared from a theoretical point of view, in order to show their advantages and disadvantages. The algorithms behind the minimum perfect matching decoder, the most popular for such codes, will be presented. The last section will be dedicated to the analysis of the performances of these topological codes with different error channel models, showing interesting results. In particular, while the error correction capability of surface codes decreases in presence of biased errors, XZZX codes own some intrinsic symmetries that allow them to improve their performances if one kind of error occurs more frequently than the others.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Some factors complicate comparisons between linkage maps from different studies. This problem can be resolved if measures of precision, such as confidence intervals and frequency distributions, are associated with markers. We examined the precision of distances and ordering of microsatellite markers in the consensus linkage maps of chromosomes 1, 3 and 4 from two F 2 reciprocal Brazilian chicken populations, using bootstrap sampling. Single and consensus maps were constructed. The consensus map was compared with the International Consensus Linkage Map and with the whole genome sequence. Some loci showed segregation distortion and missing data, but this did not affect the analyses negatively. Several inversions and position shifts were detected, based on 95% confidence intervals and frequency distributions of loci. Some discrepancies in distances between loci and in ordering were due to chance, whereas others could be attributed to other effects, including reciprocal crosses, sampling error of the founder animals from the two populations, F(2) population structure, number of and distance between microsatellite markers, number of informative meioses, loci segregation patterns, and sex. In the Brazilian consensus GGA1, locus LEI1038 was in a position closer to the true genome sequence than in the International Consensus Map, whereas for GGA3 and GGA4, no such differences were found. Extending these analyses to the remaining chromosomes should facilitate comparisons and the integration of several available genetic maps, allowing meta-analyses for map construction and quantitative trait loci (QTL) mapping. The precision of the estimates of QTL positions and their effects would be increased with such information.
Resumo:
Background: Genome wide association studies (GWAS) are becoming the approach of choice to identify genetic determinants of complex phenotypes and common diseases. The astonishing amount of generated data and the use of distinct genotyping platforms with variable genomic coverage are still analytical challenges. Imputation algorithms combine directly genotyped markers information with haplotypic structure for the population of interest for the inference of a badly genotyped or missing marker and are considered a near zero cost approach to allow the comparison and combination of data generated in different studies. Several reports stated that imputed markers have an overall acceptable accuracy but no published report has performed a pair wise comparison of imputed and empiric association statistics of a complete set of GWAS markers. Results: In this report we identified a total of 73 imputed markers that yielded a nominally statistically significant association at P < 10(-5) for type 2 Diabetes Mellitus and compared them with results obtained based on empirical allelic frequencies. Interestingly, despite their overall high correlation, association statistics based on imputed frequencies were discordant in 35 of the 73 (47%) associated markers, considerably inflating the type I error rate of imputed markers. We comprehensively tested several quality thresholds, the haplotypic structure underlying imputed markers and the use of flanking markers as predictors of inaccurate association statistics derived from imputed markers. Conclusions: Our results suggest that association statistics from imputed markers showing specific MAF (Minor Allele Frequencies) range, located in weak linkage disequilibrium blocks or strongly deviating from local patterns of association are prone to have inflated false positive association signals. The present study highlights the potential of imputation procedures and proposes simple procedures for selecting the best imputed markers for follow-up genotyping studies.
Resumo:
This paper proposes a three-stage offline approach to detect, identify, and correct series and shunt branch parameter errors. In Stage 1 the branches suspected of having parameter errors are identified through an Identification Index (II). The II of a branch is the ratio between the number of measurements adjacent to that branch, whose normalized residuals are higher than a specified threshold value, and the total number of measurements adjacent to that branch. Using several measurement snapshots, in Stage 2 the suspicious parameters are estimated, in a simultaneous multiple-state-and-parameter estimation, via an augmented state and parameter estimator which increases the V - theta state vector for the inclusion of suspicious parameters. Stage 3 enables the validation of the estimation obtained in Stage 2, and is performed via a conventional weighted least squares estimator. Several simulation results (with IEEE bus systems) have demonstrated the reliability of the proposed approach to deal with single and multiple parameter errors in adjacent and non-adjacent branches, as well as in parallel transmission lines with series compensation. Finally the proposed approach is confirmed on tests performed on the Hydro-Quebec TransEnergie network.