922 resultados para Eph receptor tyrosine kinase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crosstalk between elements of the sinusoidal vasculature, platelets and hepatic parenchymal cells influences regenerative responses to liver injury and/or resection. Such paracrine interactions include hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), IL-6 and small molecules such as serotonin and nucleotides. CD39 (nucleoside triphosphate diphosphohydrolase-1) is the dominant vascular ectonucleotidase expressed on the luminal surface of endothelial cells and modulates extracellular nucleotide signaling. We have previously shown that integrity of P2-receptors, as maintained by CD39, is required for angiogenesis in Matrigel plugs in vivo and that there is synergism between nucleotide P2-receptor- and growth factor-mediated cell proliferation in vitro. We have now explored effects of CD39 on liver regeneration and vascular endothelial growth factor responses in a standard small animal model of partial hepatectomy. The expression of CD39 on liver sinusoidal endothelial cells (LSEC) is substantially boosted during liver regeneration. This transcriptional upregulation precedes maximal sinusoidal endothelial cell proliferation, noted at day 5-8 in C57BL6 wild type mice. In matched mutant mice null for CD39 (n=14), overall survival is decreased to 71% by day 10. Increased lethality occurs as a consequence of extensive LSEC apoptosis, decreased endothelial proliferation and failure of angiogenesis leading to hepatic infarcts and regenerative failure in mutant mice. This aberrant vascular remodeling is associated with biochemical liver injury, elevated serum levels of VEGF (113.9 vs. 65.5pg/ml, p=0.013), and decreased circulating HGF (0.89 vs. 1.43 ng/ml, p=0.001) in mice null for CD39. In agreement with these observations, wild type LSEC but not CD39 null cultures upregulate HGF expression and secretion in response to exogenous VEGF in vitro. CD39 null LSEC cultures show poor proliferation responses and heightened levels of apoptosis when contrasted to wild type LSEC where agonists of P2Y receptors augment cell proliferation in the presence of growth factors. These observations are associated with features of P2Y-desensitization, normal levels of the receptor tyrosine kinase VEGFR-1 (Flt-1) and decreased expression of VEGFR-2 (FLK/KDR) in CD39 null LSEC cultures. We provide evidence that CD39 and extracellular nucleotides impact upon growth factor responses and tyrosine receptor kinases during LSEC proliferation. We propose that CD39 expression by LSEC might co-ordinate angiogenesis-independent liver protection by facilitating VEGF-induced paracrine release of HGF to promote vascular remodeling in liver regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The receptor tyrosine kinase Tie2, and its activating ligand Angiopoietin-1 (Ang1), are required for vascular remodelling and vessel integrity, whereas Ang2 may counteract these functions. However, it is not known how Tie2 transduces these different signals. Here, we show that Ang1 induces unique Tie2 complexes in mobile and confluent endothelial cells. Matrix-bound Ang1 induced cell adhesion, motility and Tie2 activation in cell-matrix contacts that became translocated to the trailing edge in migrating endothelial cells. In contrast, in contacting cells Ang1 induced Tie2 translocation to cell-cell contacts and the formation of homotypic Tie2-Tie2 trans-associated complexes that included the vascular endothelial phosphotyrosine phosphatase, leading to inhibition of paracellular permeability. Distinct signalling proteins were preferentially activated by Tie2 in the cell-matrix and cell-cell contacts, where Ang2 inhibited Ang1-induced Tie2 activation. This novel type of cellular microenvironment-dependent receptor tyrosine kinase activation may explain some of the effects of angiopoietins in angiogenesis and vessel stabilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transmembrane ligand ephrinB2 and its cognate Eph receptor tyrosine kinases are important regulators of embryonic blood vascular morphogenesis. However, the molecular mechanisms required for ephrinB2 transduced cellular signaling in vivo have not been characterized. To address this question, we generated two sets of knock-in mice: ephrinB2DeltaV mice expressed ephrinB2 lacking the C-terminal PDZ interaction site, and ephrinB2(5F) mice expressed ephrinB2 in which the five conserved tyrosine residues were replaced by phenylalanine to disrupt phosphotyrosine-dependent signaling events. Our analysis revealed that the homozygous mutant mice survived the requirement of ephrinB2 in embryonic blood vascular remodeling. However, ephrinB2DeltaV/DeltaV mice exhibited major lymphatic defects, including a failure to remodel their primary lymphatic capillary plexus into a hierarchical vessel network, hyperplasia, and lack of luminal valve formation. Unexpectedly, ephrinB2(5F/5F) mice displayed only a mild lymphatic phenotype. Our studies define ephrinB2 as an essential regulator of lymphatic development and indicate that interactions with PDZ domain effectors are required to mediate its functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The family of Eph receptor tyrosine kinases and their membrane bound ligands, the ephrins, are involved in a wide variety of morphogenic processes during embryonic development and adult tissue homeostasis. Receptor-ligand interaction requires direct cell-cell contact and results in forward and reverse signaling originating from the receptor and ligand, respectively. We have previously shown that EphB4 and ephrinB2 are differentially expressed during the development of the adult mammary parenchyma. Overexpression of EphB4 in the mammary epithelium of transgenic mice leads to perturbations in mammary epithelial morphology, motility and growth. To investigate the role of ephrinB2 signaling in mammary gland biology, we have established transgenic mice exhibiting conditional ephrinB2 knockout in the mammary epithelium. In homozygote double transgenic CreLox mice, specific knockout of ephrinB2 occurred in the mammary epithelium during the first pregnancy-lactating period. Abolishing ephrinB2 function led to severe interference with the architecture and functioning of the mammary gland at lactation. The morphology of the transgenic lactating glands resembled that of involuting controls, with decreased epithelial cell number and collapsed lobulo-alveolar structures. Accordingly, massive epithelial cell death and expression of involution-specific genes were observed. Interestingly, in parallel to cell death, significant cell proliferation was apparent, suggestive of tissue regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eph receptor tyrosine kinases and their membrane-bound ephrin ligands play key roles during morphogenesis and adult tissue homeostasis. Receptor-ligand interactions result in forward and reverse signalling from the receptor and ligand respectively. To delineate the role(s) of forward and reverse signalling in mammary gland biology we have established transgenic mice exhibiting mammary epithelial-specific overexpression of either the native ephrin-B2 or a dominant negative ephrin-B2 mutant incapable of reverse signalling. During pregnancy and lactation overexpression of the native ephrin-B2 resulted in precocious differentiation, whereas overexpression of mutated ephrin-B2 caused delayed epithelial differentiation and in disturbed tissue architecture. Both transgenes affected also mammary vascularisation. Whereas ephrin-B2 induced superfluous but organised capillaries, mutant ephrin-B2 overexpression resulted in an irregular vasculature with blind-ending capillaries. Mammary tumours were not observed in either transgenic line, however, the crossing with NeuT transgenic animals revealed that mutated ephrin-B2 expression significantly accelerated tumour growth and imposed a metastatic phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

c-Src is a non-receptor tyrosine kinase involved in regulating cell proliferation, cell migration and cell invasion and is tightly controlled by reversible phosphorylation on regulatory sites and through protein-protein interactions. The interaction of c-Src with PDZ proteins was recently identified as novel mechanism to restrict c-Src function. The objective of this study was to identify and characterise PDZ proteins that interact with c-Src to control its activity. By PDZ domain array screen, we identified the interaction of c-Src with the PDZ protein Membrane Protein Palmitoylated 2 (MPP2), a member of the Membrane-Associated Guanylate Kinase (MAGUK) family, to which also the Discs large (Dlg) tumour suppressor protein belongs. The function of MPP2 has not been established and the functional significance of the MPP2 c-Src interaction is not known. We found that in non-transformed breast epithelial MCF-10A cells, endogenous MPP2 associated with the cytoskeleton in filamentous structures, which partially co-localised with microtubules and c-Src. MPP2 and c-Src interacted in cells, where c-Src kinase activity promoted increased interaction of c-Src with MPP2. We furthermore found that MPP2 was able to negatively regulate c-Src kinase activity in cells, suggesting that the functional significance of the MPP2-c-Src interaction is to restrict Src activity. Consequently, the c-Src-dependent disorganisation of the cortical actin cytoskeleton of epithelial cells expressing c-Src was suppressed by MPP2. In conclusion we demonstrate here that MPP2 interacts with c-Src in cells to control c-Src activity and morphological function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MET, also known as hepatocyte growth factor receptor (HGFR), is a receptor tyrosine kinase with an important role, both in normal cellular function as well as in oncogenesis. In many cancer types, abnormal activation of MET is related to poor prognosis and various strategies to inhibit its function, including small molecule inhibitors, are currently in preclinical and clinical evaluation. Autophagy, a self-digesting recycling mechanism with cytoprotective functions, is induced by cellular stress. This process is also induced upon cytotoxic drug treatment of cancer cells and partially allows these cells to escape cell death. Thus, since autophagy protects different tumor cells from chemotherapy-induced cell death, current clinical trials aim at combining autophagy inhibitors with different cancer treatments. We found that in a gastric adenocarcinoma cell line GTL-16, where MET activity is deregulated due to receptor overexpression, two different MET inhibitors PHA665752 and EMD1214063 lead to cell death paralleled by the induction of autophagy. A combined treatment of MET inhibitors together with the autophagy inhibitor 3-MA or genetically impairing autophagy by knocking down the key autophagy gene ATG7 further decreased cell viability of gastric cancer cells. In general, we observed the induction of cytoprotective autophagy in MET expressing cells upon MET inhibition and a combination of MET and autophagy inhibition resulted in significantly decreased cell viability in gastric cancer cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular invasion represents a critical early step in the metastatic cascade, and many proteins have been identified as part of an “invasive signature.” The non-receptor tyrosine kinase Src is commonly upregulated in breast cancers, often in conjunction with overexpression of EGFR. Signaling from this pathway stimulates cell proliferation, migration, and invasion and frequently involves proteins that regulate the cytoskeleton. My data demonstrates that inhibition of Src, using the small-molecule inhibitor dasatinib, impairs cellular migration and invasion. Furthermore, Src inhibition sensitizes the cells to the effects of the chemotherapeutic doxorubicin resulting in dramatic, synergistic inhibition of proliferation with combination treatments. The Src-targeted protein CIP4 (Cdc42-interacting protein 4) associates with curved plasma membranes to scaffold complexes of Cdc42 and N-WASp. In these experiments, I show that CIP4 overexpression correlates with triple-negative biomarker status, cellular migration, and invasion of (breast cancer cells. Inhibition of CIP4 expression significantly decreases migration and invasion. Furthermore, I demonstrate the novel finding that CIP4 localizes to invadopodia, which are finger-like projections of the actin cytoskeleton that are associated with matrix degradation and cellular invasion. Depletion of CIP4 in invasive cells impairs the formation of invadopodia and the degradation of gelatin. Therefore, CIP4 is a critical component of the invasive phenotype acquired by human breast cancer cells. In this body of work, I propose a model in which CIP4 promotes actin polymerization by stabilizing the active conformation of N-WASp. CIP4 and N-WASp are both phosphorylated by Src, implicating this pathway in Src-dependent cytoskeletal rearragement. This represents a novel role for F-BAR proteins in migration and invasion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cancer cause of death in the US. Gemcitabine is the first-line therapy for this disease, but unfortunately it shows only very modest benefit. The focus of the current study was to investigate the role and regulation of EphA2, a receptor tyrosine kinase expressed in PDAC, to further understand this disease and identify new therapeutic targets. The role of EphA2 was determined in PDAC by siRNA mediated silencing. In combination with gemcitabine, silencing of EphA2 caused a dramatic increase in apoptosis even in highly resistant cells in vitro. Furthermore, EphA2 silencing was found to be useful in 2 orthotopic models in vivo: 1) shRNA-pretreated Miapaca-2 cells, and 2) in vivo delivery of siRNA to established MPanc96 tumors. Silencing of EphA2 alone reduced tumor growth in Miapaca-2 cells. In MPanc96, only the combination treatment of gemcitabine plus siEphA2 significantly reduced tumor growth, as well as the number of lung and liver metastases. Taken together, these observations support EphA2 as a target for combination therapies for PDAC. The regulation of EphA2 was further explored with a focus on the role of Ras. K-Ras activating mutations are the most important initiating event in PDAC. We demonstrated that Ras regulates EphA2 expression through activation of MEK2 and phosphorylation of ERK. Downstream of ERK, silencing of the transcription factor AP-1 subunit c-Jun or inhibition of the ERK effector RSK caused a decrease in EphA2 expression, supporting their roles in this process. Further examination of Ras/MEK/ERK pathway modulators revealed that PEA-15, a protein that sequesters ERK to the cytoplasm, inhibited expression of EphA2. A significant inverse correlation between EphA2 and PEA-15 levels was observed in mouse models of PDAC. In cells where an EGFR inhibitor reduced phospho-Erk, expression of EphA2 was also reduced, indicating that changes in EphA2 levels may allow monitoring the effectiveness of anti-Ras/MEK/ERK therapies. In conclusion, EphA2 levels may be a good prognostic factor for anti-EGFR/anti-Ras therapies, and EphA2 itself is a relevant target for the development of new therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EphA2, also known as ECK (epithelial cell kinase), is a transmembrane receptor tyrosine kinase that is commonly over-expressed in cancers such as those of the prostate, colon, lung, and breast. For breast cancers, EphA2 overexpression is most prominent in the ER-negative subtype, and is associated with a higher rate of lung metastasis. Studies conducted to demonstrate the role of EphA2 in a non-cancerous environment have shown that it is very important in developmental processes, but not in normal adult tissues. These results make EphA2 a prospective therapeutic target since new therapies are needed for the more aggressive ER-negative breast cancers. A panel of breast cancer cell lines was screened for expression of EphA2 by immunoblotting. Several of the overexpressing cell lines, including BT549, MDA-MB-231, and HCC 1954 were selected for experiments utilizing siRNA for transient knockdown and shRNA for stable knockdown. Targeted knockdown of EphA2 was measured using RT-PCR and immunoblotting techniques. Here, the functions of EphA2 in the process of metastasis have been elucidated using in vitro assays that indicate cancer cell metastatic potential and in vivo studies that reveal the effect of EphA2 on mammary fat pad tumor growth, vessel formation, and the effect of using EphA2-targeting siRNA on pre-established mammary fat pad tumors. A decrease in EphA2 expression both in vitro and in vivo correlated with reduced migration and experimental metastasis of breast cancer cells. Current work is being done to investigate the mechanism behind EphA2’s participation in some of these processes. These studies are important because they have contributed to understanding the role that EphA2 plays in the progression of breast cancers to a metastatic state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of hepatocellular carcinomas from malignant hepatocytes is frequently associated with intra- and peritumoral accumulation of connective tissue arising from activated hepatic stellate cells (HSC). Inhibition of receptor tyrosine kinase (RTK) signaling showed promise in the treatment of hepatocellular carcinoma. However, there is a lack of knowledge about the effects of RTK inhibitors on the tumor supportive cells. We performed in vitro experiments to study whether Sunitinib, a platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) RTKs' inhibitor, could block both activated HSC functions and angiogenesis and thus prevent the progression of cirrhotic liver to hepatocellular carcinoma. In immortalized human activated HSC LX-2, treatment with Sunitinib 100 nM blocked collagen synthesis by 47%, as assessed by Sirius Red staining, attenuated HSC contraction by 65%, and reduced cell migration by 28% as evaluated using a Boyden's chamber, without affecting cell viability, measured by Trypan blue staining, and apoptosis, measured by propidium iodide (PI) incorporation assay. Our data revealed that Sunitinib treatment blocked the transdifferentiation of primary human HSC (hHSC) to activated myofibroblast-like cells by 65% without affecting hHSC apoptosis and migration. In in vitro angiogenic assays, Sunitinib 100 nM reduced endothelial cells (EC) ring formation by 46% and tube formation by 68%, and decreased vascular sprouting in aorta ring assay and angiogenesis in vascular bed of chick embryo. In conclusion, the present study demonstrates that the RTK inhibitor Sunitinib blocks the activation of HSC and angiogenesis suggesting its potential as a drug candidate in pathological conditions like liver fibrosis and hepatocellular carcinoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Memo is a conserved protein that was identified as an essential mediator of tumor cell motility induced by receptor tyrosine kinase activation. Here we show that Memo null mouse embryonic fibroblasts (MEFs) are impaired in PDGF-induced migration and this is due to a defect in sphingosine-1-phosphate (S1P) signaling. S1P is a bioactive phospholipid produced in response to multiple stimuli, which regulates many cellular processes. S1P is secreted to the extracellular milieu where it exerts its function by binding a family of G-protein coupled receptors (S1PRs), causing their activation in an autocrine or paracrine manner. The process, termed cell-autonomous S1PR signaling, plays a role in survival and migration. Indeed, PDGF uses cell-autonomous S1PR signaling to promote cell migration; we show here that this S1P pathway requires Memo. Using vascular endothelial cells (HUVECs) with Memo knock-down we show that their survival in conditions of serum-starvation is impaired. Furthermore, Memo loss in HUVECs causes a reduction of junctional VE-cadherin and an increase in sprout formation. Each of these phenotypes is rescued by S1P or S1P agonist addition, showing that Memo also plays an important role in cell-autonomous S1PR signaling in endothelial cells. We also produced conventional and endothelial cell-specific conditional Memo knock-out mouse strains and show that Memo is essential for embryonic development. Starting at E13.5 embryos of both strains display bleeding and other vascular problems, some of the phenotypes that have been described in mouse strains lacking S1PRs. The essential role of Memo in embryonic vascular development may be due in part to alterations in S1P signaling. Taken together our results show that Memo has a novel role in the S1P pathway and that Memo is needed to promote cell-autonomous S1PR activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION Myasthenia gravis is an autoimmune disease characterized by fluctuating muscle weakness. It is often associated with other autoimmune disorders, such as thyroid disease, rheumatoid arthritis, systemic lupus erythematosus, and antiphospholipid syndrome. Many aspects of autoimmune diseases are not completely understood, particularly when they occur in association, which suggests a common pathogenetic mechanism. CASE PRESENTATION We report a case of a 42-year-old Caucasian woman with antiphospholipid syndrome, in whom myasthenia gravis developed years later. She tested negative for both antibodies against the acetylcholine receptor and against muscle-specific receptor tyrosine-kinase, but had typical decremental responses at the repetitive nerve stimulation testing, so that a generalized myasthenia gravis was diagnosed. Her thromboplastin time and activated partial thromboplastin time were high, anticardiolipin and anti-β2 glycoprotein-I antibodies were slightly elevated, as a manifestation of the antiphospholipid syndrome. She had a good clinical response when treated with a combination of pyridostigmine, prednisone and azathioprine. CONCLUSIONS Many patients with myasthenia gravis test positive for a large variety of auto-antibodies, testifying of an immune dysregulation, and some display mild T-cell lymphopenia associated with hypergammaglobulinemia and B-cell hyper-reactivity. Both of these mechanisms could explain the occurrence of another autoimmune condition, such as antiphospholipid syndrome, but further studies are necessary to shed light on this matter.Clinicians should be aware that patients with an autoimmune diagnosis such as antiphospholipid syndrome who develop signs and neurological symptoms suggestive of myasthenia gravis are at risk and should prompt an emergent evaluation by a specialist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signaling via the MET receptor tyrosine kinase has been implicated in crosstalk with cellular responses to DNA damage. Our group previously demonstrated that MET inhibition in tumor cells with deregulated MET activity results in radiosensitization via downregulation of the ATR-CHK1-CDC25 pathway, a major signaling cascade responsible for intra-S and G2/M cell cycle arrest following DNA damage. Here we aimed at studying the potential therapeutic application of ionizing radiation in combination with a MET inhibitor, EMD-1214063, in p53-deficient cancer cells that harbor impaired G1/S checkpoint regulation upon DNA damage. We hypothesized that upon MET inhibition, p53-deficient cells would bypass both G1/S and G2/M checkpoints, promoting premature mitotic entry with substantial DNA lesions and cell death in a greater extent than p53-proficient cells. Our data suggest that p53-deficient cells are more susceptible to EMD-1214063 and combined treatment with irradiation than wildtype p53 lines as inferred from elevated γH2AX expression and increased cytotoxicity. Furthermore, cell cycle distribution profiling indicates constantly lower G1 and higher G2/M population as well as higher expression of a mitotic marker p-histone H3 following the dual treatment in p53 knockdown isogenic variant, compared to the parental counterpart. IMPLICATIONS The concept of MET inhibition-mediated radiosensitization enhanced by p53 deficiency is of high clinical relevance, since p53 is frequently mutated in numerous types of human cancer. The current data point for a therapeutic advantage for an approach combining MET targeting along with DNA damaging agents for MET positive/p53 negative tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MET receptor tyrosine kinase is often deregulated in human cancers and several MET inhibitors are evaluated in clinical trials. Similarly to EGFR, MET signals through the RAS-RAF-ERK/MAPK pathway which plays key roles in cell proliferation and survival. Mutations of genes encoding for RAS proteins, particularly in KRAS, are commonly found in various tumors and are associated with constitutive activation of the MAPK pathway. It was shown for EGFR, that KRAS mutations render upstream EGFR inhibition ineffective in EGFR-positive colorectal cancers. Currently, there are no clinical studies evaluating MET inhibition impairment due to RAS mutations. To test the impact of RAS mutations on MET targeting, we generated tumor cells responsive to the MET inhibitor EMD1214063 that express KRAS G12V, G12D, G13D and HRAS G12V variants. We demonstrate that these MAPK-activating RAS mutations differentially interfere with MET-mediated biological effects of MET inhibition. We report increased residual ERK1/2 phosphorylation indicating that the downstream pathway remains active in presence of MET inhibition. Consequently, RAS variants counteracted MET inhibition-induced morphological changes as well as anti-proliferative and anchorage-independent growth effects. The effect of RAS mutants was reversed when MET inhibition was combined with MEK inhibitors AZD6244 and UO126. In an in vivo mouse xenograft model, MET-driven tumors harboring mutated RAS displayed resistance to MET inhibition. Taken together, our results demonstrate for the first time in details the role of KRAS and HRAS mutations in resistance to MET inhibition and suggest targeting both MET and MEK as an effective strategy when both oncogenic drivers are expressed.