860 resultados para Enhanced optical transmission
Resumo:
The performance enhancement of AMLCD's has been hindered with problems encountered during the curing process, such as window framing and de-lamination of the glass and adhesive. A thermo-mechanical analysis using FEA was conducted to help optimise the design of the rugged display and enhance the optical performance.
Resumo:
We present surface enhanced Raman optical activity (SEROA), as well as Raman, SERS and ROA, spectra of D- and L-ribose. By employing a gel forming polyacrylic acid to control colloid aggregation and associated birefringent artefacts we observe the first definitive proof of SEROA through measurement of mirror image bands for the two enantiomers.
Resumo:
Este trabalho investiga novas metodologias para as redes óticas de acesso de próxima geração (NG-OAN). O trabalho está dividido em quatro tópicos de investigação: projeto da rede, modelos numéricos para efeitos não lineares da fibra ótica, impacto dos efeitos não lineares da fibra ótica e otimização da rede. A rede ótica de acesso investigada nesse trabalho está projetado para suprir os requisitos de densidade de utilizadores e cobertura, isto é, suportar muitos utilizadores ( 1000) com altas velocidades de conexão dedicada ( 1 Gb/s) ocupando uma faixa estreita do espectro ( 25 nm) e comprimentos de fibra ótica até 100 km. Os cenários são baseados em redes óticas passivas com multiplexagem por divisão no comprimento de onda de alta densidade (UDWDM-PON) utilizando transmissores/receptores coerentes nos terminais da rede. A rede é avaliada para vários ritmos de transmissão usando formatos de modulação avançados, requisitos de largura de banda por utilizador e partilha de banda com tecnologias tradicionais de redes óticas passivas (PON). Modelos numéricos baseados em funções de transferência das séries de Volterra (VSTF) são demonstrados tanto para a análise dos efeitos não lineares da fibra ótica quanto para avaliação do desempenho total da rede. São apresentadas as faixas de potência e distância de transmissão nas quais as séries de Volterra apresentam resultados semelhantes ao modelo referência Split-Step Fourier (SSF) (validado experimentalmente) para o desempenho total da rede. Além disso, um algoritmo, que evita componentes espectrais com intensidade nulo, é proposto para realizar cálculos rápidos das séries. O modelo VSTF é estendido para identificar unicamente os efeitos não lineares da fibra ótica mais relevantes no cenário investigado: Self-Phase Modulation (SPM), Cross-Phase Modulation (XPM) e Four-Wave Mixing (FWM). Simulações numéricas são apresentadas para identificar o impacto isolado de cada efeito não linear da fibra ótica, SPM, XPM e FWM, no desempenho da rede com detecção coerente UDWDM-PON, transportando canais com modulação digital em fase (M-ária PSK) ou modulação digital em amplitude (M-ária QAM). A análise numérica é estendida para diferentes comprimentos de fibra ótica mono modo (SSMF), potência por canal e ritmo de transmissão por canal. Por conseguinte, expressões analíticas são extrapoladas para determinar a evolução do SPM, XPM e FWM em função da potência e distância de transmissão em cenários NG-OAN. O desempenho da rede é otimizada através da minimização parcial da interferência FWM (via espaçamento desigual dos canais), que nesse caso, é o efeito não linear da fibra ótica mais relevante. Direções para melhorias adicionas no desempenho da rede são apresentados para cenários em que o XPM é relevante, isto é, redes transportando formatos de modulação QAM. A solução, nesse caso, é baseada na utilização de técnicas de processamento digital do sinal.
Resumo:
In this article we present the spectral and nonlinear optical properties of ZnO–TiO2 nanocomposites prepared by colloidal chemical synthesis. Emission peaks of ZnO–TiO2 nanocomposites change from 340 nm to 385 nm almost in proportion to changes in Eg. The nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behaviour. The nonlinear refractive index and the nonlinear absorption increase with increasing TiO2 volume fraction at 532 nm and can be attributed to the enhancement of exciton oscillator strength. ZnO–TiO2 is a potential nanocomposite material for the tunable light emission and for the development of nonlinear optical devices with a relatively small limiting threshold
Direction Dependent Transmission Characteristics of Dye Mixture Doped Polymer Optical Fibre Preforms
Resumo:
The direction dependant wavelength selective transmission mechanism in poly (methyl methacrylate)(PMMA) rods doped with C 540 dye and C 540:Rh.B dye mixture as a combination has been investigated. When a polished slice of pure C 540 doped polymer rod was used side by side with a C540:Rh B doped rod with acceptor concentration [A] = 7x10-4 m/l , we could notice more than 100% change in the transmitted intensity along opposite directions at the C 540, Rh B emission and the excitation wavelengths . A blue high bright LED emitting at a peak wavelength 465nm was used as the excitation source.
Direction Dependent Transmission Characteristics of Dye Mixture Doped Polymer Optical Fibre Preforms
Resumo:
The direction dependant wavelength selective transmission mechanism in poly (methyl methacrylate)(PMMA) rods doped with C 540 dye and C 540:Rh.B dye mixture as a combination has been investigated. When a polished slice of pure C 540 doped polymer rod was used side by side with a C540:Rh B doped rod with acceptor concentration [A] = 7x10-4 m/l , we could notice more than 100% change in the transmitted intensity along opposite directions at the C 540, Rh B emission and the excitation wavelengths . A blue high bright LED emitting at a peak wavelength 465nm was used as the excitation source.
Direction Dependent Transmission Characteristics of Dye Mixture Doped Polymer Optical Fibre Preforms
Resumo:
The direction dependant wavelength selective transmission mechanism in poly (methyl methacrylate)(PMMA) rods doped with C 540 dye and C 540:Rh.B dye mixture as a combination has been investigated. When a polished slice of pure C 540 doped polymer rod was used side by side with a C540:Rh B doped rod with acceptor concentration [A] = 7x10-4 m/l , we could notice more than 100% change in the transmitted intensity along opposite directions at the C 540, Rh B emission and the excitation wavelengths . A blue high bright LED emitting at a peak wavelength 465nm was used as the excitation source.
Resumo:
In this article, we present the spectral and nonlinear optical properties of ZnOCu nanocomposites prepared by colloidal chemical synthesis. The emission consisted of two peaks. The 385-nm ultraviolet (UV) peak is attributed to ZnO and the 550-nm visible peak is attributed to Cu nanocolloids. Obvious enhancement of UV and visible emission of the samples is observed and the strongest UV emission of a typical ZnOCu nanocomposite is over three times stronger than that of pure ZnO. Cu acts as a sensitizer and the enhancement of UV emission are caused by excitons formed at the interface between Cu and ZnO. As the volume fraction of Cu increases beyond a particular value, the intensity of the UV peak decreases while the intensity of the visible peak increases, and the strongest visible emission of a typical ZnOCu nanocomposite is over ten times stronger than that of pure Cu. The emission mechanism is discussed. Nonlinear optical response of these samples is studied using nanosecond laser pulses from a tunable laser in the wavelength range of 450650 nm, which includes the surface plasmon absorption (SPA) band. The nonlinear response is wavelength dependent and switching from reverse saturable absorption (RSA) to saturable absorption (SA) has been observed for Cu nanocolloids as the excitation wavelength changes from the low absorption window region to higher absorption regime near the SPA band. However, ZnO colloids and ZnOCu nanocomposites exhibit induced absorption at this wavelength. Such a changeover in the sign of the nonlinearity of ZnOCu nanocomposites, with respect to Cu nanocolloids, is related to the interplay of plasmon band bleach and optical limiting mechanisms. The SA again changes back to RSA when we move over to the infrared region. The ZnOCu nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior. The nonlinear refractive index and the nonlinear absorption increases with increasing Cu volume fraction at 532 nm. The observed nonlinear absorption is explained through two-photon absorption followed by weak free-carrier absorption and interband absorption mechanisms. This study is important in identifying the spectral range and composition over which the nonlinear material acts as a RSA-based optical limiter. ZnOCu is a potential nanocomposite material for the light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
Ferrofluids belonging to the series NixFe1 xFe2O4 were synthesised by two different procedures—one by standard co-precipitation techniques, the other by co-precipitation for synthesis of particles and dispersion aided by high-energy ball milling with a view to understand the effect of strain and size anisotropy on the magneto-optical properties of ferrofluids. The birefringence measurements were carried out using a standard ellipsometer. The birefringence signal obtained for chemically synthesised samples was satisfactorily fitted to the standard second Langevin function. The ball-milled ferrofluids showed a deviation and their birefringence was enhanced by an order. This large enhancement in the birefringence value cannot be attributed to the increase in grain size of the samples, considering that the grain sizes of sample synthesised by both modes are comparable; instead, it can be attributed to the lattice strain-induced shape anisotropy(oblation) arising from the high-energy ball-milling process. Thus magnetic-optical (MO) signals can be tuned by ball-milling process, which can find potential applications.
Resumo:
The objective of this study is to understand the reasons for the enhancement in aerosol optical depth (AOD) over the Arabian Sea observed during June, July and August. During these months, high values of AOD are found over the sea beyond 10◦ N and adjacent regions. The Arabian Sea is bounded by the lands of Asia and Africa on its three sides. So the region is influenced by transported aerosols from the surroundings as well as aerosols of local origin (marine aerosols). During the summer monsoon season in India, strong surface winds with velocities around 15 m s−1 are experienced over most parts of the Arabian Sea. These winds are capable of increasing sea spray activity, thereby enhancing the production of marine aerosols. The strong winds increase the contribution of marine aerosols over the region to about 60% of the total aerosol content. The main components of marine aerosols include sea salt and sulphate particles. The remaining part of the aerosol particles comes from the western and northern land masses around the sea, of which the main component is transported dust particles. This transport is observed at higher altitudes starting from 600 m. At low levels, the transport occurs mainly from the Indian Ocean and the Arabian Sea itself, indicating the predominance of marine aerosols at these levels. The major portion of the total aerosol loading was contributed by coarse-mode particles during the period of study. But in the winter season, the concentration of coarse-mode aerosols is found to be less. From the analysis, it is concluded that the increase in marine aerosols and dust particles transported from nearby deserts results in an increase in aerosol content over the Arabian Sea during June, July and August.
Resumo:
Ferrofluids belonging to the series NixFe1 xFe2O4 were synthesised by two different procedures—one by standard co-precipitation techniques, the other by co-precipitation for synthesis of particles and dispersion aided by high-energy ball milling with a view to understand the effect of strain and size anisotropy on the magneto-optical properties of ferrofluids. The birefringence measurements were carried out using a standard ellipsometer. The birefringence signal obtained for chemically synthesised samples was satisfactorily fitted to the standard second Langevin function. The ball-milled ferrofluids showed a deviation and their birefringence was enhanced by an order. This large enhancement in the birefringence value cannot be attributed to the increase in grain size of the samples, considering that the grain sizes of sample synthesised by both modes are comparable; instead, it can be attributed to the lattice strain-induced shape anisotropy(oblation) arising from the high-energy ball-milling process. Thus magnetic-optical (MO) signals can be tuned by ball-milling process, which can find potential applications
Resumo:
The rapid growth of the optical communication branches and the enormous demand for more bandwidth require novel networks such as dense wavelength division multiplexing (DWDM). These networks enable higher bitrate transmission using the existing optical fibers. Micromechanically tunable optical microcavity devices like VCSELs, Fabry-Pérot filters and photodetectors are core components of these novel DWDM systems. Several air-gap based tunable devices were successfully implemented in the last years. Even though these concepts are very promising, two main disadvantages are still remaining. On the one hand, the high fabrication and integration cost and on the other hand the undesired adverse buckling of the suspended membranes. This thesis addresses these two problems and consists of two main parts: • PECVD dielectric material investigation and stress control resulting in membranes shape engineering. • Implementation and characterization of novel tunable optical devices with tailored shapes of the suspended membranes. For this purposes, low-cost PECVD technology is investigated and developed in detail. The macro- and microstress of silicon nitride and silicon dioxide are controlled over a wide range. Furthermore, the effect of stress on the optical and mechanical properties of the suspended membranes and on the microcavities is evaluated. Various membrane shapes (concave, convex and planar) with several radii of curvature are fabricated. Using this resonator shape engineering, microcavity devices such as non tunable and tunable Fabry-Pérot filters, VCSELs and PIN photodetectors are succesfully implemented. The fabricated Fabry-Pérot filters cover a spectral range of over 200nm and show resonance linewidths down to 1.5nm. By varying the stress distribution across the vertical direction within a DBR, the shape and the radius of curvature of the top membrane are explicitely tailored. By adjusting the incoming light beam waist to the curvature, the fundamental resonant mode is supported and the higher order ones are suppressed. For instance, a tunable VCSEL with 26 nm tuning range, 400µW maximal output power, 47nm free spectral range and over 57dB side mode suppresion ratio (SMSR) is demonstrated. Other technologies, such as introducing light emitting organic materials in microcavities are also investigated.
Resumo:
This paper analyzes the performance of Enhanced relay-enabled Distributed Coordination Function (ErDCF) for wireless ad hoc networks under transmission errors. The idea of ErDCF is to use high data rate nodes to work as relays for the low data rate nodes. ErDCF achieves higher throughput and reduces energy consumption compared to IEEE 802.11 Distributed Coordination Function (DCF) in an ideal channel environment. However, there is a possibility that this expected gain may decrease in the presence of transmission errors. In this work, we modify the saturation throughput model of ErDCF to accurately reflect the impact of transmission errors under different rate combinations. It turns out that the throughput gain of ErDCF can still be maintained under reasonable link quality and distance.