896 resultados para Engineering, Biomedical|Nanotechnology|Engineering, Materials Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microstructure of MmNi(3.5)(CoAlMn)(1.5)/Mg (here Mm denotes La-rich mischmetal) multi-layer hydrogen storage thin films prepared by direct current magnetron sputtering was investigated by cross-sectional transmission electron microscopy (XTEM). It was shown that the MMM5 layers are composed of two regions: an amorphous region with a thickness of similar to 4nm at the bottom of the layers and a randomly orientated nanocrystallite region on the top of the amorphous region and the Mg layers consist of typical columnar crystallite with their [001] direction nearly parallel to the growth direction. The mechanism for the formation of the above microstructure characteristics in the multi-layer thin films has been proposed. Based on the microstructure feature of the multi-layer films, mechanism for the apparent improvement of hydrogen absorption/desorption kinetics was discussed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PbS nanocrystals are synthesized using colloidal techniques and have their surfaces capped with oleic acid. The absorption band edge of the PbS nanocrystals is tuned between 900 and 580 nm. The PbS nanocrystals exhibit tuneable photoluminescence with large non-resonant Stokes shifts of up to 500 mcV. The magnitude of the Stokes shift is found to be dependent upon the size of PbS nanocrystals. Time-resolved photoluminescence spectroscopy of the PbS nanocrystals reveals that the photouminescence has an extraordinarily long lifetime of 1 mus. This long fluorescence lifetime is attributed to the effect of dielectric screening similar to that observed in other IV-VI semiconductor nanocrystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the interfacial interactions between the nanofiller and polymer matrix is important to improve the design and manufacture of polymer nanocomposites. This paper reports a molecular dynamic Study on the interfacial interactions and structure of a clay-based polyurethane intercalated nanocomposite. The results show that the intercalation of surfactant (i.e. dioctadecyldlmethyl ammonium) and polyurethane (PU) into the nanoconfined gallery of clay leads to the multilayer structure for both surfactant and PU, and the absence of phase separation for PU chains. Such structural characteristics are attributed to the result of competitive interactions among the surfactant, PU and the clay surface, including van der Waals, electrostatic and hydrogen bonding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microhardness maps of cross-sections of high-pressure diecast test bars of AZ91 have been determined. Specimens with rectangular cross-sections, 1, 2 and 3 mm thick, or with a circular cross-section 6.4 mm in diameter, have been studied. The hardness is generally higher near the edges in all specimens, and more so near the corners of the rectangular specimens. The hardness at the center of the castings is generally lower, due to a coarser solidification microstructure and the concentration of porosity. The evidence confirms that the surface of the castings is harder than the core, but it does not support the concept of a skin with a sharp. and definable boundary. This harder layer is irregular in hardness and depth and is not equally hard on opposite sides of the casting. The mean hardness obtained by integrating the microhardness maps over the entire cross-section increased with decreasing thickness of the bars, and was found to be in good correlation with each bar's yield strength. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The in vitro and in vivo degradation properties of poly(lactic-co-glycolic acid) (PLGA) scaffolds produced by two different technologies-therm ally induced phase separation (TIPS), and solvent casting and particulate leaching (SCPL) were compared. Over 6 weeks, in vitro degradation produced changes in SCPL scaffold dimension, mass, internal architecture and mechanical properties. TIPS scaffolds produced far less changes in these parameters providing significant advantages over SCPL. In vivo results were based on a microsurgically created arteriovenous (AV) loop sandwiched between two TIPS scaffolds placed in a polycarbonate chamber under rat groin skin. Histologically, a predominant foreign body giant cell response and reduced vascularity was evident in tissue ingrowth between 2 and 8 weeks in TIPS scaffolds. Tissue death occurred at 8 weeks in the smallest pores. Morphometric comparison of TIPS and SCPL scaffolds indicated slightly better tissue ingrowth but greater loss of scaffold structure in SCPL scaffolds. Although advantageous in vitro, large surface area:volume ratios and varying pore sizes in PLGA TIPS scaffolds mean that effective in vivo (AV loop) utilization will only be achieved if the foreign body response can be significantly reduced so as to allow successful vascularisation, and hence sustained tissue growth, in pores less than 300 mu m. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new modification phenomenon is reported for Al-Si alloys, where the Al-Si eutectic is refined by segregated TiB2 particles. The TiB2 particles are pushed to the Al-Si phase boundary during solidification of the eutectic and it is believed that at high concentrations the TiB2 particles restrict solute redistribution causing refinement of the Si. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grain size is one of the most important microstructural characteristics determining the mechanical properties and therefore the service performance of polycrystalline materials. Heterogeneous nucleation involves the addition or in situ formation of potent nuclei in the system to promote nucleation events, leading to a fine grain structure. This paper reports experimental results using graphite and SiC as potential grain refining agents to form in situ nuclei for Mg in Mg-Al alloys, and demonstrates the key role of Al4C3 in grain refilling this important alloy system. This insight will contribute to the design and development of the most cost effective, eco-friendly grain refining agents for Mg-Al alloys. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of SiC particles effectively grain refined a range of Mg-Al alloys. The greatest reductions in grain size were found for the alloys with lower Al contents. The presence of Mg2Si in the microstructure after that SiC addition, and consideration of phase equilibria suggested that the SiC transforms to Al4C3, and this is the actual nucleant. The addition of Mn poisoned the grain refining effect of the SiC addition, probably due to the formation of less potent Al-Mn-carbides. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic investigation was performed on the hydrogen storage properties of mechano-chemically prepared MgH2/Single-walled carbon nanotube (SWNT) composites. It is found that the hydrogen absorption capacity and hydriding kinetics of the composites were dependent on the addition amount of SWNTs as well as milling time. A 5 wt.% addition of SVVNTs is optimum to facilitate the hydrogen absorption and desorption of MgH2. The composite MgH2/5 wt.% SWNTs milled for 10h can absorb 6.7 wt.% hydrogen within about 2 min at 573 K, and desorb 6 wt.% hydrogen in about 5 min at 623 K. Prolonging the milling time over 10 h leads to a serious degradation on hydrogen storage property of the MgH2/SWNT composite, and property/structure investigations suggest that the property degradation comes from the structure destruction of the SWNTs. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Double- walled carbon nanotubes (DWNTs) were synthesized used carbon black as the dot carbon source by a semi-continuous hydrogen arc discharge process. High-resolution transmission electron microscopy (HRTEM) observations revealed that most of the tubes were DWNTs with outer and inner diameters in the range of 2.67 - 4 nm and 1.96 - 3.21 nm, respectively. Most of the DWNTs were in a bundle form of about 10 - 30 nm in diameter with high purity ( about 70%) from thermal gravimetric analysis (TGA), resonant laser Raman spectroscopy, scanning electron microscopy (SEM) and TEM characterizations. It was found that carbon black as the dot carbon source could be easy controlled to synthesize one type of nanotube. A simple process combining oxidation and acid treatment to purify the DWNT bundles was used without damaging the bundles. The structure of carbon black, as the key element for influencing purity, bundle formation and purification of DWNTs, is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various Mg/carbon and Mg/noncarbon composite systems were prepared by mechanical milling and their hydrogen storage behaviors were investigated. It was found that all the carbon additives exhibited prominent advantage over the noncarbon additives, such as BN nanotubes (BNNTs) or asbestos in improving the hydrogen capacity and dehydriding/hydriding kinetics of Mg. And among the various carbon additives, purified single-walled carbon nanotubes (SWNTs) exhibited the most prominent catalytic effect on the hydrogen storage properties of Mg. The hydrogen capacities of all Mg/C composites at 573 K reached more than 6.2 wt.% within 10 min, about 1.5 wt.% higher than that of pure MgH2 at the identical operation conditions. Under certain operation temperatures, H-absorption/desorption rates of Mg/carbon systems were over one order of magnitude higher than that of pure Mg. Furthermore, the starting temperature of the desorption reaction of MgH2 has been lowered to 60 K by adding SWNTs. On the basis of the hydrogen storage behavior and structure/phase investigations, the possible mechanism involved in the property improvement of Mg upon adding carbon materials was discussed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method has been developed to produce thick (> 400 mu m) AlN surface layers oil aluminium plates at 540 degrees C, under nitrogen at atmospheric pressure. A critical element of the process is the use of Mg powder placed in close proximity to the Al plate surface. The Mg reduces/disrupts the natural, protective oxide film on the Al surface. The nitride layers form through two distinct modes, one growing outward from the Al plate surface and the other growing into the Al. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of trace level Ni additions on the eutectic solidification mode of Sn-0.7Cu has been studied using continuous torque experiments during solidification. The solid fraction at which resistance to paddle rotation at the thermal centre of the sample occurs is related to the spatial distribution of solid during solidification. The results indicate that a transition in solidification mode occurs in the range 0-300 ppm Ni. Growth occurs antiparallel to heat flow from near the mould walls in the Ni-free alloy, while equiaxed growth from distributed centres dominates in alloys containing at least 300 ppm Ni. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The edge-to-edge matching model, which was originally developed for predicting crystallographic features in diffusional phase transformations in solids, has been used to understand the formation of in-plane textures in TiSi2 (C49) thin films on Si single crystal (001)si surface. The model predicts all the four previously reported orientation relationships between C49 and Si substrate based on the actual atom matching across the interface and the basic crystallographic data only. The model has strong potential to be used to develop new thin film materials. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.