967 resultados para Elastomeric Hybrid Composites
Resumo:
This thesis developed and evaluated strategies for social and ubiquitous computing designs that can enhance connected learning and networking opportunities for users in coworking spaces. Based on a social and a technical design intervention deployed at the State Library of Queensland, the research findings illustrate the potential of combining social, spatial and digital affordances in order to nourish peer-to-peer learning, creativity, inspiration, and innovation. The study proposes a hybrid notion of placemaking as a new way of thinking about the design of coworking and interactive learning spaces.
Resumo:
The growth of suitable tissue to replace natural blood vessels requires a degradable scaffold material that is processable into porous structures with appropriate mechanical and cell growth properties. This study investigates the fabrication of degradable, crosslinkable prepolymers of l-lactide-co-trimethylene carbonate into porous scaffolds by electrospinning. After crosslinking by γ-radiation, dimensionally stable scaffolds were obtained with up to 56% trimethylene carbonate incorporation. The fibrous mats showed Young’s moduli closely matching human arteries (0.4–0.8 MPa). Repeated cyclic extension yielded negligible change in mechanical properties, demonstrating the potential for use under dynamic physiological conditions. The scaffolds remained elastic and resilient at 30% strain after 84 days of degradation in phosphate buffer, while the modulus and ultimate stress and strain progressively decreased. The electrospun mats are mechanically superior to solid films of the same materials. In vitro, human mesenchymal stem cells adhered to and readily proliferated on the three-dimensional fiber network, demonstrating that these polymers may find use in growing artificial blood vessels in vivo.
Resumo:
A series of copolymers of trimethylene carbonate (TMC) and l-lactide (LLA) were synthesized and evaluated as scaffolds for the production of artificial blood vessels. The polymers were end-functionalized with acrylate, cast into films, and cross-linked using UV light. The mechanical, degradation, and biocompatibility properties were evaluated. High TMC polymers showed mechanical properties comparable to human arteries (Young’s moduli of 1.2–1.8 MPa and high elasticity with repeated cycling at 10% strain). Over 84 days degradation in PBS, the modulus and material strength decreased gradually. The polymers were nontoxic and showed good cell adhesion and proliferation over 7 days using human mesenchymal stem cells. When implanted into the rat peritoneal cavity, the polymers elicited formation of tissue capsules composed of myofibroblasts, resembling immature vascular smooth muscle cells. Thus, these polymers showed properties which were tunable and favorable for vascular tissue engineering, specifically, the growth of artificial blood vessels in vivo.
Resumo:
The University of Queensland UltraCommuter concept is an ultra- light, low-drag, hybrid-electric sports coupe designed to minimize energy consumption and environmental impact while enhancing the performance, styling, features and convenience that motorists enjoy. This paper presents a detailed simulation study of the vehicle's performance and fuel economy using ADVISOR, including a detailed description of the component models and parameters assumed. Results from the study include predictions of a 0-100 kph acceleration time of ≺9s, and top speed of 170 kph, an electrical energy consumption of ≺67 Wh/km in ZEV mode and a petrol-equivalent fuel consumption of ≺2.5 L/100 km in charge-sustaining HEV mode. Overall, the results of the ADVISOR modelling confirm the UltraCommuter's potential to achieve high performance with high efficiency, and the authors look forward to a confirmation of these estimates following completion of the vehicle.
Resumo:
This paper presents a new simplified parametric analysis technique for the design of fuel cell and hybrid-electric vehicles. The technique utilizes a comprehensive set of ∼30 parameters to fully characterize the vehicle platform, powertrain components, vehicle performance requirements and driving conditions. It is best applied to the sizing of powertrain components and prediction of energy consumption in a vehicle. This new parametric technique makes a good complement to existing vehicle simulation software packages and therefore represents a potentially valuable tool for the hybrid vehicle designer.
Resumo:
Investigates the braking performance requirements of the UltraCommuter, a lightweight series hybrid electric vehicle currently under development at the University of Queensland. With a predicted vehicle mass of 600 kg and two in-wheel motors each capable of 500 Nm of peak torque, decelerations up to 0.46 g are theoretically possible using purely regenerative braking. With 99% of braking demands less than 0.35 g, essentially all braking can be regenerative. The wheel motors have sufficient peak torque capability to lock the rear wheels in combination with front axle braking, eliminating the need for friction braking at the rear. Emergency braking levels approaching 1 g are achieved by supplementation with front disk brakes. This paper presents equations describing the peak front and rear axle braking forces which occur under straight line braking, including gradients. Conventionally, to guarantee stability, mechanical front/rear proportioning of braking effort ensures that the front axle locks first. In this application, all braking is initially regenerative at the rear, and an adaptive ''by-wire'' proportioning system presented ensures this stability requirement is still satisfied. Front wheel drive and all wheel drive systems are also discussed. Finally, peak and continuous performance measures, not commonly provided for friction brakes, are derived for the UltraCommuter's motor capability and range of operation.
Resumo:
This study investigated how and to what degree “hybrid photography”—the simultaneous use of indexical and fictional properties and strategies— innovates the representation of animals within animalcentric, ecocentric frameworks. Design theory structured this project’s Practice-led, Visual research methodology framework. Grounded theory processes articulated emerging categories of hybrid photography through systematically and comparatively treating animal photography works for reflexive analysis. Design theory then applied and clarified categories, developing practice that re-visualised shark perspectives as new ecological discourse. Shadows, a creative practice installation, realised a full-scale photographic investigation into shark and marine animal realities of a specific environment—Heron Island and Gladstone, Great Barrier Reef—facing ecological crisis from dredging and development at Gladstone Harbour. Works rendered and explored hybrid photography’s capacity for illuminating nonhuman animals, in particular, sharks, and comprise 65% of this project’s weighting. This exegetical paper offers a definition, strategies and evaluation of hybrid photography in unsettling animal perspectives as effective ecological discourse, and comprises 35%.
Resumo:
This paper presents a novel framework for the modelling of passenger facilitation in a complex environment. The research is motivated by the challenges in the airport complex system, where there are multiple stakeholders, differing operational objectives and complex interactions and interdependencies between different parts of the airport system. Traditional methods for airport terminal modelling do not explicitly address the need for understanding causal relationships in a dynamic environment. Additionally, existing Bayesian Network (BN) models, which provide a means for capturing causal relationships, only present a static snapshot of a system. A method to integrate a BN complex systems model with stochastic queuing theory is developed based on the properties of the Poisson and Exponential distributions. The resultant Hybrid Queue-based Bayesian Network (HQBN) framework enables the simulation of arbitrary factors, their relationships, and their effects on passenger flow and vice versa. A case study implementation of the framework is demonstrated on the inbound passenger facilitation process at Brisbane International Airport. The predicted outputs of the model, in terms of cumulative passenger flow at intermediary and end points in the inbound process, are found to have an $R^2$ goodness of fit of 0.9994 and 0.9982 respectively over a 10 hour test period. The utility of the framework is demonstrated on a number of usage scenarios including real time monitoring and `what-if' analysis. This framework provides the ability to analyse and simulate a dynamic complex system, and can be applied to other socio-technical systems such as hospitals.
Resumo:
Polyaniline (PANI)/Pt nanoparticle composites can be prepared by the spontaneous redox reaction of K2PtCl4 with PANI, to yield thin films that show electrocatalytic properties in both acidic and neutral aqueous media.
Resumo:
This study reports the synthesis of extremely high aspect ratios (>3000) organic semiconductor nanowires of Ag–tetracyanoquinodimethane (AgTCNQ) on the surface of a flexible Ag fabric for the first time. These one-dimensional (1D) hybrid Ag/AgTCNQ nanostructures are attained by a facile, solution-based spontaneous reaction involving immersion of Ag fabrics in an acetonitrile solution of TCNQ. Further, it is discovered that these AgTCNQ nanowires show outstanding antibacterial performance against both Gram negative and Gram positive bacteria, which outperforms that of pristine Ag. The outcomes of this study also reflect upon a fundamentally important aspect that the antimicrobial performance of Ag-based nanomaterials may not necessarily be solely due to the amount of Ag+ ions leached from these nanomaterials, but that the nanomaterial itself may also play a direct role in the antimicrobial action. Notably, the applications of metal-organic semiconducting charge transfer complexes of metal-7,7,8,8-tetracyanoquinodimethane (TCNQ) have been predominantly restricted to electronic applications, except from our recent reports on their (photo)catalytic potential and the current case on antimicrobial prospects. This report on growth of these metal-TCNQ complexes on a fabric not only widens the window of these interesting materials for new biological applications, it also opens the possibilities for developing large-area flexible electronic devices by growing a range of metal-organic semiconducting materials directly on a fabric surface.
Resumo:
This paper presents a review of existing and current developments and the analysis of Hybrid-Electric Propulsion Systems (HEPS) for small fixed-wing Unmanned Aerial Vehicles (UAVs). Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. One technology with potential in this area is with the use of HEPS. In this paper, information on the state-of-art technology in this field of research is provided. A description and simulation of a parallel HEPS for a small fixed-wing UAV by incorporating an Ideal Operating Line (IOL) control strategy is described. Simulation models of the components in a HEPS were designed in the MATLAB Simulink environment. An IOL analysis of an UAV piston engine was used to determine the most efficient points of operation for this engine. The results show that an UAV equipped with this HEPS configuration is capable of achieving a fuel saving of 6.5%, compared to the engine-only configuration.
Resumo:
Over the last decade advanced composite materials, like carbon fibre reinforced polymer (CFRP), have increasingly been used in civil engineering infrastructure. The benefits of advanced composites are rapidly becoming evident. This paper focuses on the comparative performance of steel and concrete members retrofitted by carbon fibre reinforced polymers. The objective of this work is a systematic assessment and evaluation of the performance of CFRP for both the concrete and steel members available in the technical literature. Existing empirical and analytical models were studied. Comparison is made with respect to failure mode, bond characteristics, fatigue behaviour, durability, corrosion, load carrying capacity and force transfer. It is concluded that empirical expressions for the concrete-CFRP composite are not readily suited for direct use in the steel-CFRP composite. This paper identifies some of the major issues that need further investigation.
Resumo:
The role of polymer chemistry (pure and applied sciences) is very prominent in the world of science today, but it is heading away from polymers and polymer blends towards composites and nanocomposites. This allows for the creation of new materials with unique properties and new possibilities which is the subject of this new book.
Resumo:
This paper considers an emerging planning practice that uses networked connections to interact with urban places and re-create enlivened cities. The paper presents “urban acupuncture” as a new planning approach that broadens communication and strategically targets interventions across the city. Defined as an approach, which, through the use of digital social networks and interactions, involves citizens and planners in place activations in order to stimulate and reinvigorate place, thus creating meaningful relationships between citizens and their urban settings. This paper uses the UR[BNE] Brisbane Festival 2012 as a qualitative case study of urban acupuncture, best defined as a hyper-localized healing treatment through place activation to enliven and recreate cities. It examines the challenges faced and opportunities embraced by a network of urban professionals. Their aim was to activate the underused urban spaces of central Brisbane through the festival's activities and events. The findings identify the key elements required to design public spaces using socially and technologically networked interactions.
Resumo:
Railway crew scheduling problem is the process of allocating train services to the crew duties based on the published train timetable while satisfying operational and contractual requirements. The problem is restricted by many constraints and it belongs to the class of NP-hard. In this paper, we develop a mathematical model for railway crew scheduling with the aim of minimising the number of crew duties by reducing idle transition times. Duties are generated by arranging scheduled trips over a set of duties and sequentially ordering the set of trips within each of duties. The optimisation model includes the time period of relief opportunities within which a train crew can be relieved at any relief point. Existing models and algorithms usually only consider relieving a crew at the beginning of the interval of relief opportunities which may be impractical. This model involves a large number of decision variables and constraints, and therefore a hybrid constructive heuristic with the simulated annealing search algorithm is applied to yield an optimal or near-optimal schedule. The performance of the proposed algorithms is evaluated by applying computational experiments on randomly generated test instances. The results show that the proposed approaches obtain near-optimal solutions in a reasonable computational time for large-sized problems.