889 resultados para Economical and feasibility study
Resumo:
The dorsal surface of the tongue of the bullfrog, Rana catesbeiana, has simple columnar epithelium with a few ciliated cells and goblet cells. The entire surface is covered with numerous filiform papillae and few fungiform. Filiform papillae have a simple columnar epithelium with secretory cells, while the fungiform have a sensory disc on their upper surface the lined by a stratified columnar epithelium with basal, peripheral, glandular and receptor cells. Over the dorsal lingual surface there are numerous winding tubular glands, which penetrate deeply into the muscle of the tongue, mingling with the fibers. The gland epithelium is cylindrical with secretory and supporting cells. The first are absolute on the basis of the gland and the latter are rare in the upper third. The ventral surface of the tongue is lined by a stratified epithelium, with the presence of goblet cells, with ciliated cells among them. Morphometrically, lingual glands varies in length, according to their location: shorter in the anterior region of the tongue (330 mu m) than in the posterior region (450 mu m). Secretory cells of the anterior lingual glands are smaller (1457.7 mm(3)) than the posterior ones (2645.9 mu m(3)). The same can be said of the cell nuclei, 130.0 mu m(3) for the anterior glands and 202.3 mu m(3) for the posterior ones. Secretory cells of the lingual glands contain substances rich in protein and neutral mucopolysaccharides, which characterize the seromucous type. Goblet cells of the dorsal and ventral surface epithelia secrete neutral mucopolysaccharides and proteins, and can be characterized as type G1 cells, and the supporting cells of the superficial glands of the fungiform papillae secrete a mucus rich in neutral mucopolysaccharides, sulfomucins and sialomucins.
Effect of Sodium Cyclamate on the Rat Fetal Exocrine Pancreas: a Karyometric and Stereological Study
Resumo:
The cyclamate, a sweetner substance derived from N-cyclo-hexyl-sulfamic acid, is largely utilized as a non-caloric artificial edulcorant in foods and beverages as well as in the pharmaceutical industry. The objective of this study was to evaluate karyometric and stereological alterations in the rat fetal pancreas resulting from the intraperitoneal administration of sodium cyclamate. The exocrine pancreas of ten fetuses of rats were evaluated, five treated and five controls chosen at random, in which five rats that received from the 10th to 14th days of pregnancy an intraperitoneal daily injection of sodium cyclamate at 60 mg/Kg of body weight during 5 days. At the 20th day of gestation, the animals were removed and weighed, as were their placentas; the length of the umbilical cords also were measured. After the laboratory processing, semi-seriated 6mm cuts stained with haematoxyline and cosine were performed. In seven karyometric parameters (major, minor, and medium diameters, volume, area, perimeter, and volume-area ratio), the increase was statistically significant in the treated group when compared with control group. Stereological parameters showed in the treated group a significant increase in the cellular volume and a significant reduction in the numerical cellular density. These results showed that the sodium cyclamate in pregnant rats led to retardation of fetal development and hypertrophy in the exocrine pancreas of the rat fetuses.
Resumo:
This is a study in the rat of the distribution of specific neurotransmitters in neurones projecting from the substantia nigra reticulata (SNR) to the ventrolateral (VL) and ventromedial (VM) thalamic nuclei. Individual axons projecting from the SNR to these thalamic nuclei have also been reconstructed following small injection of the anterograde tracer dextran biotin into the the SNR. Analysis of reconstructions revealed two populations of SNR neurones projecting onto the VL and VM thalamic nuclei. One group projects directly onto the VM and VL, and the other projects to the VM/VL and to the parafascicular nucleus. In another set of experiments Fluoro-Gold was injected into the VL/VM to label SNR projection neurones retrogradely, and immunohistochemistry was performed to determine the distribution of choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), gamma -aminobutyric acid (GABA), and glutamate in Fluoro-Gold-labelled SNR projection neurones. Most SNR-VL/VM thalamic projection neurones were immunoreactive to acetylcholine or glutamate, whereas only 25% of the projection neurones were found to be immunoreactive to GABA. (C) 2001 Wiley-Liss, Inc.
Resumo:
Experimental and thermodynamic modeling studies have been carried out on the Zn-Fe-Si-O system. This research is part of a wider program to characterize zinc/lead industrial slags and sinters in the PbO-ZnO-SiO2-CaO-FeO-Fe2O3 system. Experimental investigations involve high-temperature equilibration and quenching techniques followed by electron probe X-ray microanalysis (EPMA). Liquidus temperatures and solid solubilities of the crystalline phases were measured in the temperature range from 1200 °C to 1450 °C (1473 to 1723 K) in the zinc ferrite, zincite, willemite, and tridymite primary-phase fields in the Zn-Fe-Si-O system in air. These equilibrium data for the Zn-Fe-Si-O system in air, combined with previously reported data for this system, were used to obtain an optimized self-consistent set of parameters of thermodynamic models for all phases.
Resumo:
Objective: To measure the prevalence of obesity in Australian adults and to examine the associations of obesity with socioeconomic and lifestyle factors. Design: AusDiab, a cross-sectional study conducted between May 1999 and December 2000, involved participants from 42 randomly selected districts throughout Australia. Participants: Of 20 347 eligible people aged greater than or equal to 25 years who completed a household interview, 11247 attended the physical examination at local survey sites (response rate, 55%). Main outcome measures: Overweight and obesity defined by body mass index (BMI; kg/m(2)) and waist circumference (cm); sociodemographic factors (including smoking, physical activity and television viewing time). Results: The prevalence of overweight and obesity (BMI greater than or equal to 25.0 kg/m(2); waist circumference greater than or equal to 80.0 cm [women] or greater than or equal to 94.0 cm [men]) in both sexes was almost 60%, defined by either BMI or waist circumference. The prevalence of obesity was 2.5 times higher than in 1980. Using waist circumference, the prevalence of obesity was higher in women than men (34.1% v 26.8%; P < 0.01). Lower educational status, higher television viewing time and lower physical activity time were each strongly associated with obesity, with television viewing time showing a stronger relationship than physical activity time. Conclusions: The prevalence of obesity in Australia has more than doubled in the past 20 years. Strong positive associations between obesity and each of television viewing time and lower physical activity time confirm the influence of sedentary lifestyles on obesity, and underline the potential benefits of reducing sedentary behaviour, as well as increasing physical activity, to curb the obesity epidemic.
Resumo:
OBJECTIVE: To describe the characteristics and associated factors of the smoking habit among older adults. METHODS: A population-based study was carried out comprising 1,606 (92.2%) older adults (>60 years old) living in the Bambuí town, Southeastern Brazil in 1997. Data was obtained by means of interview and socio-demographic factors, health status, physical functioning, use of healthcare services and medication were considered. The multiple multinomial logistic regression was used to assess independent associations between smoking habits (current and former smokers) and the exploratory variables. RESULTS: The prevalence of current and past smoking was 31.4% and 40.2% among men, and 10.3% and 11.2% among women, respectively (p<0.001). Among current smokers, men consumed a larger number of cigarettes per day and started the habit earlier than women. Among men, current smoking presented independent and negative association with age (>80 years) and schooling (>8 years) and positive association with poor health perception and not being married. Among women, independent and negative associations with current smoking were observed for age (75-79 and >80 years) and schooling (4-7 and >8 years). CONCLUSIONS: Smoking was a public health concern among older adults in the studied community, particularly for men. Yet, in a low schooling population, a slightly higher level was a protective factor against smoking for both men and women. Programs for reducing smoking in the elderly population should take these findings into consideration.
Resumo:
Wastewater from cork processing industry present high levels of organic and phenolic compounds, such as tannins, with a low biodegradability and a significant toxicity. These compounds are not readily removed by conventional municipal wastewater treatment, which is largely based on primary sedimentation followed by biological treatment. The purpose of this work is to study the biodegradability of different cork wastewater fractions, obtained through membrane separation, in order to assess its potential for biological treatment and having in view its valorisation through tannins recovery, which could be applied in other industries. Various ultrafiltration and nanofiltration membranes where used, with molecular weight cut-offs (MWCO) ranging from 0.125 to 91 kDa. The wastewater and the different permeated fractions were analyzed in terms of Total Organic Carbon (TOC), Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Phenols (TP), Tannins, Color, pH and Conductivity. Results for the wastewater shown that it is characterized by a high organic content (670.5-1056.8 mg TOC/L, 2285-2604 mg COD/L, 1000-1225 mg BOD/L), a relatively low biodegradability (0.35-0.38 for BODs/COD and 0.44-0.47 for BOD20/COD) and a high content of phenols (360-410 mg tannic acid/L) and tannins (250-270 mg tannic acid/L). The results for the wastewater fractions shown a general decrease on the pollutant content of permeates, and an increase of its biodegradability, with the decrease of the membrane MWCO applied. Particularly, the permeated fraction from the membrane MWCO of 3.8 kDa, presented a favourable index of biodegradability (0.8) and a minimized phenols toxicity that enables it to undergo a biological treatment and so, to be treated in a municipal wastewater treatment plant. Also, within the perspective of valorisation, the rejected fraction obtained through this membrane MWCO may have a significant potential for tannins recovery. Permeated fractions from membranes with MWCO lower than 3.8 kDa, presented a particularly significant decline of organic matter and phenols, enabling this permeates to be reused in the cork processing and so, representing an interesting perspective of zero discharge for the cork industry, with evident environmental and economic advantages. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this work, we investigated structural, morphological, electrical, and optical properties from a set of Cu2ZnSnS4 thin films grown by sulfurization of metallic precursors deposited on soda lime glass substrates coated with or without molybdenum. X-ray diffraction and Raman spectroscopy measurements revealed the formation of single-phase Cu2ZnSnS4 thin films. A good crystallinity and grain compactness of the film was found by scanning electron microscopy. The grown films are poor in copper and rich in zinc, which is a composition close to that of the Cu2ZnSnS4 solar cells with best reported efficiency. Electrical conductivity and Hall effect measurements showed a high doping level and a strong compensation. The temperature dependence of the free hole concentration showed that the films are nondegenerate. Photoluminescence spectroscopy showed an asymmetric broadband emission. The experimental behavior with increasing excitation power or temperature cannot be explained by donor-acceptor pair transitions. A model of radiative recombination of an electron with a hole bound to an acceptor level, broadened by potential fluctuations of the valence-band edge, was proposed. An ionization energy for the acceptor level in the range 29–40 meV was estimated, and a value of 172 ±2 meV was obtained for the potential fluctuation in the valence-band edge.
Resumo:
This paper focuses on evaluating the usability of an Intelligent Wheelchair (IW) in both real and simulated environments. The wheelchair is controlled at a high-level by a flexible multimodal interface, using voice commands, facial expressions, head movements and joystick as its main inputs. A Quasi-experimental design was applied including a deterministic sample with a questionnaire that enabled to apply the System Usability Scale. The subjects were divided in two independent samples: 46 individuals performing the experiment with an Intelligent Wheelchair in a simulated environment (28 using different commands in a sequential way and 18 with the liberty to choose the command); 12 individuals performing the experiment with a real IW. The main conclusion achieved by this study is that the usability of the Intelligent Wheelchair in a real environment is higher than in the simulated environment. However there were not statistical evidences to affirm that there are differences between the real and simulated wheelchairs in terms of safety and control. Also, most of users considered the multimodal way of driving the wheelchair very practical and satisfactory. Thus, it may be concluded that the multimodal interfaces enables very easy and safe control of the IW both in simulated and real environments.
Resumo:
The initial goal of this work was the development of a supported liquid membrane (SLM) bioreactor for the remediation of vaccine production effluents contaminated with a highly toxic organomercurial – thiomersal. Therefore, two main aspects were focused on: 1) the development of a stable supported liquid membrane – using room temperature ionic liquids (RTILs) – for the selective transport of thiomersal from the wastewater to a biological compartment, 2) study of the biodegradation kinetics of thiomersal to metallic mercury by a Pseudomonas putida strain. The first part of the work focused on the evaluation of the physicochemical properties of ionic liquids and on the SLMs’ operational stability. The results obtained showed that, although it is possible to obtain a SLM with a high stability, water possesses nonnegligible solubility in the RTILs studied. The formation of water clusters inside the hydrophobic ionic liquid was identified and found to regulate the transport of water and small ions. In practical terms, this meant that, although it was possible to transport thiomersal from the vaccine effluent to the biological compartment, complete isolation of the microbial culture could not be guaranteed and the membrane might ultimately be permeable to other species present in the aqueous vaccine wastewater. It was therefore decided not to operate the initially targeted integrated system but, instead, the biological system by itself. Additionally, attention was given to the development of a thorough understanding of the transport mechanisms involved in the solubilisation and transport of water through supported liquid membranes with RTILs as well as to the evaluation of the effect of water uptake by the SLM in the transport mechanisms of water-soluble solutes and its effect on SLM performance. The results obtained highlighted the determinant role played by water – solubilised inside the ionic liquids – on the transport mechanism. It became clear that the transport mechanism of water and water-soluble solutes through SLMs with [CnMIM][PF6] RTILs was regulated by the dynamics of water clusters inside the RTIL, rather than by molecular diffusion through the bulk of the ionic liquid. Although the stability tests vi performed showed that there were no significant losses of organic phase from the membrane pores, the formation of water clusters inside the ionic liquid, which constitute new, non-selective environments for solute transport, leads to a clear deterioration of SLM performance and selectivity. Nevertheless, electrical impedance spectroscopy characterisation of the SLMs showed that the formation of water clusters did not seem to have a detrimental effect on the SLMs’ electrical characteristics and highlighted the potential of using this type of membranes in electrochemical applications with low resistance requirements. The second part of the work studied the kinetics of thiomersal degradation by a pure culture of P. putida spi3 strain, in batch culture and using a synthe tic wastewater. A continuous ly stirred tank reactor fed with the synthetic wastewater was also operated and the bioreactor’s performance and robustness, when exposed to thiomersal shock loads, were evaluated. Finally, a bioreactor for the biological treatment of a real va ccine production effluent was set up and operated at different dilution rates. Thus it was possible to treat a real thiomersal-contaminated effluent, lowering the outlet mercury concentration to values below the European limit for mercury effluent discharges.
Resumo:
Adhesive bonding as a joining or repair method has a wide application in many industries. Repairs with bonded patches are often carried out to re-establish the stiffness at critical regions or spots of corrosion and/or fatigue cracks. Single and double-strap repairs (SS and DS, respectively) are a viable option for repairing. For the SS repairs, a patch is adhesively-bonded on one of the structure faces. SS repairs are easy to execute, but the load eccentricity leads to peel peak stresses at the overlap edges. DS repairs involve the use of two patches, one on each face of the structure. These are more efficient than SS repairs, due to the doubling of the bonding area and suppression of the transverse deflection of the adherends. Shear stresses also become more uniform as a result of smaller differential straining. The experimental and Finite Element (FE) study presented here for strength prediction and design optimization of bonded repairs includes SS and DS solutions with different values of overlap length (LO). The examined values of LO include 10, 20 and 30 mm. The failure strengths of the SS and DS repairs were compared with FE results by using the Abaqus® FE software. A Cohesive Zone Model (CZM) with a triangular shape in pure tensile and shear modes, including the mixed-mode possibility for crack growth, was used to simulate fracture of the adhesive layer. A good agreement was found between the experiments and the FE simulations on the failure modes, elastic stiffness and strength of the repairs, showing the effectiveness and applicability of the proposed FE technique in predicting strength of bonded repairs. Furthermore, some optimization principles were proposed to repair structures with adhesively-bonded patches that will allow repair designers to effectively design bonded repairs.
Resumo:
It has been pointed out recently that current experiments still allow for a two Higgs doublet model where the hbb¯ coupling (kDmb/v) is negative; a sign opposite to that of the Standard Model. Due to the importance of delayed decoupling in the hH+H− coupling, h→γγ improved measurements will have a strong impact on this issue. For the same reason, measurements or even bounds on h→Zγ are potentially interesting. In this article, we revisit this problem, highlighting the crucial importance of h→VV, which can be understood with simple arguments. We show that the impacts on kD<0 models of both h→bb¯ and h→τ+τ− are very sensitive to input values for the gluon fusion production mechanism; in contrast, h→γγ and h→Zγ are not. We also inquire if the search for h→Zγ and its interplay with h→γγ will impact the sign of the hbb¯ coupling. Finally, we study these issues in the context of the flipped two Higgs doublet model.
Resumo:
Treatment of a dichloromethane solution of trans-[Mo(NCN){NCNC(O)R}(dppe)(2)]Cl [R = Me (1a), Et (1b)] (dppe = Ph2PCH2CH2PPh2) with HBF4, [Et3O][BF4] or EtC(O)Cl gives trans-[Mo(NCN)Cl-(dppe)(2)]X [X = BF4 (2a) or Cl (2b)] and the corresponding acylcyanamides NCN(R')C(O)Et (R' = H, Et or C(O)Et). X-ray diffraction analysis of 2a (X = BF4) reveals a multiple-bond coordination of the cyanoimide ligand. Compounds 1 convert to the bis(cyanoimide) trans-[Mo(NCN)(2)(dppe)(2)] complex upon reaction with an excess of NaOMe (with formation of the respective ester). In an aprotic medium and at a Pt electrode, compounds 1 (R = Me, Et or Ph) undergo a cathodically induced isomerization. Full quantitative kinetic analysis of the voltammetric behaviour is presented and allows the determination of the first-order rate constants and the equilibrium constant of the trans to cis isomerization reaction. The mechanisms of electrophilic addition (protonation) to complexes 1 and the precursor trans[Mo(NCN)(2)(dppe)(2)], as well as the electronic structures, nature of the coordination bonds and electrochemical behaviour of these species are investigated in detail by theoretical methods which indicate that the most probable sites of the proton attack are the oxygen atom of the acyl group and the terminal nitrogen atom, respectively.
Resumo:
Buildings account for 40% of total energy consumption in the European Union. The reduction of energy consumption in the buildings sector constitute an important measure needed to reduce the Union's energy dependency and greenhouse gas emissions. The Portuguese legislation incorporate this principles in order to regulate the energy performance of buildings. This energy performance should be accompanied by good conditions for the occupants of the buildings. According to EN 15251 (2007) the four factors that affect the occupant comfort in the buildings are: Indoor Air Quality (IAQ), thermal comfort, acoustics and lighting. Ventilation directly affects all except the lighting, so it is crucial to understand the performance of it. The ventilation efficiency concept therefore earn significance, because it is an attempt to quantify a parameter that can easily distinguish the different options for air diffusion in the spaces. The two indicators most internationally accepted are the Air Change Efficiency (ACE) and the Contaminant Removal Effectiveness (CRE). Nowadays with the developed of the Computational Fluid Dynamics (CFD) the behaviour of ventilation can be more easily predicted. Thirteen strategies of air diffusion were measured in a test chamber through the application of the tracer gas method, with the objective to validate the calculation by the MicroFlo module of the IES-VE software for this two indicators. The main conclusions from this work were: that the values of the numerical simulations are in agreement with experimental measurements; the value of the CRE is more dependent of the position of the contamination source, that the strategy used for the air diffusion; the ACE indicator is more appropriate for quantifying the quality of the air diffusion; the solutions to be adopted, to maximize the ventilation efficiency should be, the schemes that operate with low speeds of supply air and small differences between supply air temperature and the room temperature.
Resumo:
The indeterminate form of Chagas' disease is characterized by positive serology for the disease in the absence of clinical findings and in the presence of both normal esophagogram and electrocardiogram. When more sensitive methods were used, abnormalities have been described either in the esophagus or in the heart. The authors have studied simultaneously the esophagus and the heart in the same subjects. In thirteen adults with diagnosis of indeterminate form and nine adult controls, the esophageal manometry both in basal conditions and after stimulus (bethanecol) and vectorcardiogram were performed. In the control group none of the subjects presented concomitant esophageal and cardiac alterations while in the chagasic group 92,3% of the patients presented results simultaneously altered. It is concluded that the studied patients showed indications of parasympathetic denervation manifested by simultaneously esophageal and heart alterations.