314 resultados para ETHERS
Resumo:
An analytical method was developed for the simultaneous determination in poultry manure of 41 organic contaminants belonging to different chemical classes: pesticides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and polybrominated diphenyl ethers. Poultry manure was extracted with a modified QuEChERS method, and the extracts were analyzed by isotope dilution GC/MS. Recovery of these contaminants from samples spiked at levels ranging from 25 to 100 ng/g was satisfactory for all the compounds. The developed procedure provided LODs from 0.8 to 9.6 ng/g. The analysis of poultry manure samples collected on different farms confirmed the presence of some of the studied contaminants. Pyrethroids and polycyclic aromatic hydrocarbons were the main contaminants detected.
Resumo:
Protoporphyrinogen oxidase (EC 1–3-3–4), the 60-kDa membrane-bound flavoenzyme that catalyzes the final reaction of the common branch of the heme and chlorophyll biosynthesis pathways in plants, is the molecular target of diphenyl ether-type herbicides. It is highly resistant to proteases (trypsin, endoproteinase Glu-C, or carboxypeptidases A, B, and Y), because the protein is folded into an extremely compact form. Trypsin maps of the native purified and membrane-bound yeast protoporphyrinogen oxidase show that this basic enzyme (pI > 8.5) was cleaved at a single site under nondenaturing conditions, generating two peptides with relative molecular masses of 30,000 and 35,000. The endoproteinase Glu-C also cleaved the protein into two peptides with similar masses, and there was no additional cleavage site under mild denaturing conditions. N-terminal peptide sequence analysis of the proteolytic (trypsin and endoproteinase Glu-C) peptides showed that both cleavage sites were located in putative connecting loop between the N-terminal domain (25 kDa) with the βαβ ADP-binding fold and the C-terminal domain (35 kDa), which possibly is involved in the binding of the isoalloxazine moiety of the FAD cofactor. The peptides remained strongly associated and fully active with the Km for protoporphyrinogen and the Ki for various inhibitors, diphenyl-ethers, or diphenyleneiodonium derivatives, identical to those measured for the native enzyme. However, the enzyme activity of the peptides was much more susceptible to thermal denaturation than that of the native protein. Only the C-terminal domain of protoporphyrinogen oxidase was labeled specifically in active site-directed photoaffinity-labeling experiments. Trypsin may have caused intramolecular transfer of the labeled group to reactive components of the N-terminal domain, resulting in nonspecific labeling. We suggest that the active site of protoporphyrinogen oxidase is in the C-terminal domain of the protein, at the interface between the C- and N-terminal domains.
Resumo:
Dynamic combinatorial libraries are mixtures of compounds that exist in a dynamic equilibrium and can be driven to compositional self adaptation via selective binding of a specific assembly of certain components to a molecular target. We present here an extension of this initial concept to dynamic libraries that consists of two levels, the first formed by the coordination of terpyridine-based ligands to the transition metal template, and the second, by the imine formation with the aldehyde substituents on the terpyridine moieties. Dialdehyde 7 has been synthesized, converted into a variety of ligands, oxime ethers L11–L33 and acyl hydrazones L44–L77, and subsequently into corresponding cobalt complexes. A typical complex, Co(L22)22+ is shown to engage in rapid exchange with a competing ligand L11 and with another complex, Co(L22)22+ in 30% acetonitrile/water at pH 7.0 and 25°C. The exchange in the corresponding Co(III) complexes is shown to be much slower. Imine exchange in the acyl hydrazone complexes (L44–L77) is strongly controlled by pH and temperature. The two types of exchange, ligand and imine, can thus be used as independent equilibrium processes controlled by different types of external intervention, i.e., via oxidation/reduction of the metal template and/or change in the pH/temperature of the medium. The resulting double-level dynamic libraries are therefore named orthogonal, in similarity with the orthogonal protecting groups in organic synthesis. Sample libraries of this type have been synthesized and showed the complete expected set of components in electrospray ionization MS.
Resumo:
A simple and highly sensitive catalysis assay is demonstrated based on analyzing reactions with acridonetagged compounds by thin-layer chromatography. As little as 1 pmol of product is readily visualized by its blue fluorescence under UV illumination and identified by its retention factor (Rf). Each assay requires only 10 microliters of solution. The method is reliable, inexpensive, versatile, and immediately applicable in repetitive format for screening catalytic antibody libraries. Three examples are presented: (i) the epoxidation of acridone labeled (S)-citronellol. The pair of stereoisomeric epoxides formed is resolved on the plate, which provides a direct selection method for enantioselective epoxidation catalysts. (ii) Oxidation of acridone-labeled 1-hexanol to 1-hexanal. The activity of horse liver alcohol dehydrogenase is detected. (iii) Indirect product labeling of released aldehyde groups by hydrazone formation with an acridone-labeled hydrazide. Activity of catalytic antibodies for hydrolysis of enol ethers is detected.
Resumo:
The thermal degradation of flexible polyurethane foam has been studied under different conditions by thermogravimetric analysis (TG), thermogravimetric analysis-infrared spectrometry (TG-IR) and thermogravimetric analysis-mass spectrometry (TG-MS). For the kinetic study, dynamic and dynamic+isothermal runs were performed at different heating rates (5, 10 and 20 °C min−1) in three different atmospheres (N2, N2:O2 4:1 and N2:O2 9:1). Two reaction models were obtained, one for the pyrolysis and another for the combustion degradation (N2:O2 4:1 and N2:O2 9:1), simultaneously correlating the experimental data from the dynamic and dynamic+isothermal runs at different heating rates. The pyrolytic model considered consisted of two consecutive reactions with activation energies of 142 and 217.5 kJ mol−1 and reaction orders of 0.805 and 1.246. Nevertheless, to simulate the experimental data from the combustion runs, three consecutive reactions were employed with activation energies of 237.9, 103.5 and 120.1 kJ mol−1, and reaction orders of 2.003, 0.778 and 1.025. From the characterization of the sample employing TG-IR and TG-MS, the results obtained showed that the FPUF, under an inert atmosphere, started the decomposition breaking the urethane bond to produce long chains of ethers which were degraded immediately in the next step. However, under an oxidative atmosphere, at the first step not only the urethane bonds were broken but also some ether polyols started their degradation which finished at the second step producing a char that was degraded at the last stage.
Resumo:
In some cases external morphology is not sufficient to discern between populations of a species, as occurs in the dung beetle Canthon humectus hidalgoensis Bates; and much less to determine phenotypic distances between them. FTIR-ATR spectroscopy show several advantages over other identification techniques (e.g. morphological, genetic, and cuticular hydrocarbons analysis) due to the non-invasive manner of the sample preparation, the relative speed of sample analysis and the low-cost of this technology. The infrared spectrum obtained is recognized to give a unique ‘fingerprint’ because vibrational spectra are specific and unique to the molecular nature of the sample. In our study, results showed that proteins, amino acids and aromatic ethers of insect exocuticle have promising discriminative power to discern between different populations of C. h. hidalgoensis. Furthermore, the correlation between geographic distances between populations and the chemical distances obtained by proteins + amino acids + aromatic ethers was statistically significant, showing that the spectral and spatial information available of the taxa together with appropriated chemometric methods may help to a better understanding of the identity, structure, dynamics and diversity of insect populations.
Resumo:
A comparative study of the influence of three different acid solids as catalysts (conventional zeolites Z15c with Si/Al = 19.5 and Z40c with Si/Al = 48.2, and a hierarchical zeolite Z40c-H with Si/Al = 50.0) for the etherification of glycerol with benzyl alcohol was performed. The catalytic activity and selectivity of these zeolites was elucidated at different catalyst contents. Three different ethers (3-benzyloxy-1,2-propanediol, which is a mono-benzyl-glycerol ether (MBG) and 1,3-dibenzyloxy-2-propanol, which is a di-benzyl-glycerol ether (DBG) and dibenzyl ether (DBz) were identified as the main products. MBG was the major product of the reaction catalyzed by the microporous Z15c zeolite with low Si/Al molar ratio, whereas DBG was formed in higher yield with the use of microporous Z40c and hierarchical Z40c-H zeolites, both of them having a similar high Si/Al molar ratio (≈50). MBG is a value-added product and it is obtained with good yield and selectivity when using the conventional zeolite Z15c as a catalyst. Under the best conditions tested, i.e., 25 mg of catalyst for 8 h at 120 °C, a 62% of conversion was obtained without the need of solvent, with an excellent 84% selectivity toward the MBG and no formation of DBz.
Resumo:
Carbon and graphene-based materials often show some amount of pseudocapacitance due to their oxygen-functional groups. However, such pseudocapacitance is generally negligible in organic electrolytes and has not attracted much attention. In this work, we report a large pseudocapacitance of zeolite-templated carbon (ZTC) based on the oxygen-functional groups in 1 M tetraethylammonium tetrafluoroborate dissolved in propylene carbonate (Et4NBF4/PC). Due to its significant amount of active edge sites, a large amount of redox-active oxygen functional groups are introduced into ZTC, and ZTC shows a high specific capacitance (330 F g−1). Experimental results suggest that the pseudocapacitance could be based on the formation of anion and cation radicals of quinones and ethers, respectively. Moreover, ZTC shows pseudocapacitance also in 1 M lithium hexafluorophosphate dissolved with a mixture of ethylene carbonate and diethyl carbonate (LiPF6/EC+DEC) which is used for lithium-ion batteries and lithium-ion capacitors.
Resumo:
We report on the comparative bioaccumulation, biotransformation and/or biomagnification from East Greenland ringed seal (Pusa hispida) blubber to polar bear (Ursus maritimus) tissues (adipose, liver and brain) of various classes and congeners of persistent chlorinated and brominated contaminants and metabolic by-products: polychlorinated biphenyls (PCBs), chlordanes (CHLs), hydroxyl (OH-) and methylsulfonyl (MeSO2-) PCBs, polybrominated biphenyls (PBBs), OH-PBBs, polybrominated diphenyl ether (PBDE) and hexabromocyclododecane (HBCD) flame retardants and OH- and methoxyl (MeO-) PBDEs, 2,2-dichloro-bis(4-chlorophenyl)ethene (p,p'-DDE), 3-MeSO2-p,p'-DDE, pentachlorophenol (PCP) and 4-OH-heptachlorostyrene (4-OH-HpCS). We detected all of the investigated contaminants in ringed seal blubber with high frequency, the main diet of East Greenland bears, with the exception of OH-PCBs and 4-OH-HpCS, which indicated that these phenolic contaminants were likely of metabolic origin and formed in the bears from accumulated PCBs and octachlorostyrene (OCS), respectively, rather than being bioaccumulated from a seal blubber diet. For all of the detectable sum of classes or individual organohalogens, in general, the ringed seal to polar bear mean BMFs for SumPCBs, p,p'-DDE, SumCHLs, SumMeSO2-PCBs, 3-MeSO2-p,p'-DDE, PCP, SumPBDEs, total-(alpha)-HBCD, SumOH-PBDEs, SumMeO-PBDEs and SumOH-PBBs indicated that these organohalogens bioaccumulate, and in some cases there was tissue-specific biomagnification, e.g., BMFs for bear adipose and liver ranged from 2 to 570. The blood-brain barrier appeared to be effective in minimizing brain accumulation as BMFs were <= 1 in the brain, with the exception of SumOH-PBBs (mean BMF = 93±54). Unlike OH-PCB metabolites, OH-PBDEs in the bear tissues appeared to be mainly accumulated from the seal blubber rather than being metabolic formed from PBDEs in the bears. In vitro PBDE depletion assays using polar bear hepatic microsomes, wherein the rate of oxidative metabolism of PBDE congeners was very slow, supported the probability that accumulation from seals is the main source of OH-PBDEs in the bear tissues. Our findings demonstrated from ringed seal to polar bears that organohalogen biotransformation, bioaccumulation and/or biomagnification varied widely and depended on the contaminant in question. Our results show the increasing complexity of bioaccumulated and in some cases biomagnified, chlorinated and brominated contaminants and/or metabolites from the diet may be a contributing stress factor in the health of East Greenland polar bears.
Resumo:
Thyroid hormones are essential for normal growth and development and disruption of thyroid homeostasis can be critical to young developing individuals. The aim of the present study was to assess plasma concentrations of halogenated organic contaminants (HOCs) in chicks of two seabird species and to investigate possible correlations of HOCs with circulating thyroid hormone (TH) concentrations. Plasma from black-legged kittiwake (Rissa tridactyla) and northern fulmar (Fulmarus glacialis) chicks were sampled in Kongsfjorden, Svalbard in 2006. The samples were analyzed for thyroid hormones and a wide range of HOCs (polychlorinated biphenyls (PCBs), hydroxylated (OH-) and methylsulphoned (MeSO-) PCB metabolites, organochlorine pesticides (OCPs), brominated flame retardants (BFRs), and perfluorinated compounds (PFCs)). Concentrations of HOCs were generally low in kittiwake and fulmar chicks compared to previous reports. HOC concentrations were five times higher in fulmar chicks compared to in kittiwake chicks. PFCs dominated the summed HOCs concentrations in both species (77% in kittiwakes and 69% in fulmars). Positive associations between total thyroxin (TT4) and PFCs (PFHpS, PFOS, PFNA) were found in both species. Although correlations do not implicate causal relationships per se, the correlations are of concern as disruption of TH homeostasis may cause developmental effects in young birds.