422 resultados para ENSO
Resumo:
The Amapá State has an important natural lake system, known as The Amapá Lakes Region . Most of these lakes are on the southern part of Amapá s coastal plain, which has 300 km of extension and it s composed by holocenic sediments deposited at the northern part of Amazon River to the Orange Cape located on the northern part of Amapá state. This region is under influence of the Amazon River discharge which is the largest liquid discharge of about 209.000 m³/s and biggest sediment budget discharged on the ocean in the order 6.108 ton per day. The climate is influenced by the Intertropical Convergence Zone and El Niño Southern Oscillation which act mainly under precipitation, nebulosity, local rivers and tidal hidrology. In this region lake belts are Ocidental, Oriental and Meridional Lake Belts. The last one is formed by the by the lakes Comprido de Cima, Botos, Bacia, Lodão, Ventos, Mutuco and Comprido de Baixo. These lakes are the closest to the Araguari River and are characterized by pelitic sedimentation associated with fluvial and estuarine flood plains under influence of tides. The lakes are interconnected, suffer influence of flood pulses from the Tartarugal, Tartarugalzinho and Araguari rivers and the hydrodynamic and morphodynamic know edge is poor. Volume and area reduction, natural eutrophication, anthophic influence, hidrodynamic alterations, morphological changes and are factors which can contribute to the closing of such lakes on the Meridional Lake Belt. This belt is inside the boundaries of the Biological Reserve of Piratuba Lake, created in 1980 for integral protection. Due to the fragility of the environment together with the poor knowledge of the system and with the study area relevancy it is necessary to know the hydrodynamic and geoenvironmental processes. This work aims the characterization of morphodynamic and hydrodynamic processes in order to understand the geoambiental context of the Meridional Lake Belt, from the Comprido de Baixo Lake to the dos Ventos Lake, including the Tabaco Igarape. Methodology was based on the hydrodynamic data acquisition: liquid discharge (acoustic method), tides, bathymetry and the interpretation of multitemporal remote sensing images, integrated in a Geographic Information System (GIS). By this method charts of the medium liquid discharges of Lake Mutuco and Tabacco Igarape the maximum velocity of flow were estimated in: 1.1 m/s, 1.6 m/s and 1.6 m/s (rainy season) and 0.6 m/s, 0.6 m/s and 0.7 m/s (dry period), the maximum flow in: 289 m³/s, 297 m³/s and 379 m³/s (rainy season) and 41 m³/s , 79 m³/s and 105 m³/s (dry period), respectively. From the interpretation of multitemporal satellite images, maps were developed together with the analysis of the lakes and Tobaco Igarape evolution from 1972 to 2008, and were classified according to the degree of balance in the area: stable areas, eutrophic areas, areas of gain, and eroded areas. Troughout analysis of the balance of areas, it was possible to quantify the volume of lake areas occupied by aquatic macrophytes. The study sought to understand the hydrodynamic and morphodynamic processes occurring in the region, contributing to the elucidation of the processes which cause and/or favor geoenvironmental changes in the region; all such information is fundamental to making the management of the area and further definition of parameters for environmental monitoring and contributing to the development of the management plan of the Biological Reserve of Lake Piratuba. The work activities is a part of the Project "Integration of Geological, geophysical and geochemical data to Paleogeographic rebuilding of Amazon Coast, from the Neogene to the Recent
Resumo:
The purpose of this work was to analyze the variability of pluvial precipitation at the Mid-Paranapanema Hydric Resources Management Unit (UGRI II-17), both spatially and temporally. To that effect, 33 pluviometric series were used, obtained from the National Water Agency (ANA), for the period from 1940 to 2000. The averages, standard deviation, upper and lower quartiles, maximum rainfalls, within the analyzed period, as well as the anomalies in these series, were calculated. The anomalies of the 1982/1983 El Nino, as well as the classification of homogeneous areas inside the basin were also calculated. Variability was observed from one year to the other, with rainier years - for example, 1982 and 1983 - and drier years - such as 1985 and 2000.
Resumo:
O presente trabalho apresenta uma contribuição aos estudos de modelagem climática com ênfase na variabilidade pluviométrica sazonal da Amazônia oriental, durante as estações de verão e outono (DJF e MAM). Baseado nos resultados das simulações regionais do RegCM3 para um período de 26 anos (1982/83 a 2007/08) e usando domínio em alta resolução espacial (30 Km) e dois diferentes esquemas de convecção (Grell e MIT), foi investigado o desempenho do modelo em simular a distribuição regional de precipitação sazonal na Amazônia oriental, com referência a um novo conjunto de dados observacional compilado com informações de uma ampla rede integrada de estações pluviométricas. As análises quantitativas evidenciaram que o RegCM3 apresenta erros sistemáticos, sobretudo aqueles relacionados com viés seco no Amapá e norte/nordeste do Pará usando ambos os esquemas Grell e MIT, os quais apontam que o modelo não reproduz as características da ZCIT sobre o Atlântico equatorial. As simulações usando MIT, também apresentaram viés úmido no sudoeste/sul/sudeste do Pará e norte do Tocantins. Além disso, através da técnica de composições, também foi investigado o desempenho do RegCM3 em reproduzir os padrões espaciais anômalos de precipitação sazonal em associação aos episódios ENOS, e as fases do gradiente térmico sobre o Atlântico intertropical. Os resultados demonstraram que o modelo conseguiu representar realisticamente bem o padrão espacial das anomalias pluviométricas acima (abaixo) do normal em grande parte da Amazônia oriental, durante os conhecidos cenários favoráveis, i.e., condições de La Niña e gradiente de aTSM para o Atlântico sul (desfavoráveis, i.e., El Niño e gradiente de aTSM para o Atlântico norte.
Resumo:
Baseado no conjunto de dados diários de precipitação e temperatura do ar de oito estações meteorológicas sobre o Pará, pertencentes ao INMET, disponíveis no período 1961-2007, foram calculados índices de extremos climáticos através da metodologia estatística do software RClimdex. Utilizando-se ainda um conjunto de dados mensais de precipitação de 134 estações pluviométricas da Amazônia oriental, provenientes da ANA e INMET, foram analisadas as tendências anual e sazonal num período de 25 a 37 anos (1970-2009), através da aplicação da estatística não-paramétrica (teste de Mann-Kendall e método de Sen). E por fim, utilizaram-se dados de desmatamento do PRODES/INPE no período 2000-2007, para analisar a possível influência do desmatamento nas tendências de precipitação anual e sazonal do Pará. Considerando os índices de extremos climáticos referentes aos dados diários de precipitação, constatou-se que a variabilidade interanual dos índices possui relações com os episódios ENOS e as fases do Dipolo do Atlântico. Para os extremos climáticos de temperatura evidenciaram-se reduções sistemáticas dos dias frios (TX10p) e aumentos sistemáticos da mínima da máxima temperatura (TXN), da percentagem de noites quentes (TX90p) e da temperatura máxima da máxima (TXX). Os resultados das tendências da precipitação anual usando os testes não-paramétricos evidenciaram que do total de 134 estações, em torno de 51% apresentam tendências positivas e 41% tendências negativas sobre a Amazônia oriental. Contudo, essas tendências anuais “mascararam” de certa forma as tendências sazonais, cujos resultados mostraram-se mais diversificados, explicando melhor os aspectos da variabilidade climática regional. Para o trimestre MAM, observaram-se 99 estações (74%) com tendências positivas, indicando que a quantidade de precipitação durante o período chuvoso principal vem aumentando sistematicamente durante a última década. Em DJF, notaram-se 45 estações (34%) com tendências positivas e 78 estações (58%) com tendências negativas. Por outro lado, nos trimestres que englobam o período seco ou menos chuvoso verificaram-se tendências sazonais predominantemente negativas, com 84 estações (62%) em JJA e 89 estações (66%) em SON. Portanto, a evidência observacional de que a precipitação do período seco encontra-se em diminuição gradativa nas últimas décadas corrobora com a hipótese de que o desmatamento associa-se com a redução da precipitação em escala regional, porém sugere-se que isso ocorra em escala de tempo sazonal.
Resumo:
Tendo como foco as múltiplas escalas de tempo que atuam na Amazônia, este trabalho foi desenvolvido com o objetivo de investigar a possível influencia da Oscilação Madden – Julian (OMJ) em elementos turbulentos da CLP. A OMJ foi identificada a partir de 30 anos de dados de reanálise de radiação de onda longa (ROL) e componente zonal do vento (u). As grandezas turbulentas foram estudadas a partir da variância, covariância e coeficiente de correlação de um conjunto de dados de resposta rápida coletado na torre micrometeorológica de Caxiuanã (PA), e tratados com a Transformada em Ondeletas (TO) para se obter a contribuição de cada escala para estes momentos estatísticos. A análise dos 30 anos de dados de ROL e u mostrou que a ocorrência da OMJ está ligada com o fenômeno do El Niño/Oscilação Sul (ENOS), bem como influência do ENOS no tempo da região amazônica pode estar associado a presença ou não da OMJ. Foi observado que anos de El Niño tendem a desfavorecer a ocorrência da OMJ e anos de La Niña tendem a favorecer o desenvolvimento da oscilação. Caso uma OMJ se desenvolva durante um episodio de El Niño, a oscilação pode influenciar a temperatura, a velocidade do vento e a precipitação de forma diferente ao do El Niño. A análise por fase da OMJ mostrou que, em Belém, há diferença significativa na temperatura máxima e na precipitação entre cada fase, porém, a temperatura mínima e o módulo do vento apresentaram pouca diferença. Os fluxos cinemáticos turbulentos analisados, por escala, em três horários distintos, foram mais diferentes durante o período diurno, principalmente w’T’ e w’q’. A diferença entre fase ativa e fase inativa foi reduzindo com passar do dia, durante o período de transição dia – noite, poucas escalas tiveram diferença significativa, e durante a noite, nenhuma escala teve nível de confiança acima ou igual a 95%. Estes resultados indicam que a convecção diurna é o mecanismo responsável por esta diferença e como a OMJ atua como uma grande célula convectiva, a convecção local é amplificada, explicando a grande diferença observada entre as fases durante o período diurno.
Resumo:
This study examined precipitation in southern Brazil based on a data set provided by the Brazilian National Water Agency, covering the period from 1976 to 2010. Data were homogenized using the R software and the Climatol subroutine, which allow completing missing data. Isohyets were drawn using the Geostatistics software to obtain a semivariogram for each analysis. There was a remarkable interannual variability in this region, with positive anomalies in the warm phase (El Nino) and negative anomalies in the cold phase (La Nina) of ENSO. Also, the responses of this variability were not uniform in the entire region, since there was variability from year to year and from event to event.
Resumo:
The study of variability becomes increasingly important nowadays . Studying the behavior of rainfall before external events is of paramount importance. The region of Vale do Paraíba , it is important to study variability , since the region is influenced by the ocean and constant cold fronts that end causing precipitation during most months of the year . This study aims to analyze the variability in rain UGRHI - 2 by analyzing the interference of ENSO events / Southern Oscillation and the Convergence Zone South Atlantic (SACZ) in the amount and distribution of rainfall. The UGRHI helped were created for distribution and control of water in the state of São Paulo , divided watersheds were avoided so that problems such as poor distribution and water shortages in some areas of the state . To study variability , various software , including Excel , Variowin and R statistical package , the subroutine Climatol were used , with the goal of developing isolines showing the spatial distribution of rainfall anomalies in the years studied also the anomaly index was studied rain (IAC) , noting more effectively the years of positive and negative anomaly , with the purpose of studying the temporal variability of rainfall in the study area.
Resumo:
Deep Sea Drilling Project Site 480 (27°54.10’N, 111°39.34’W; 655 m water depth) contains a high resolution record of paleoceanographic change of the past 15 000 years for the Guaymas Basin, a region of very high diatom productivity within the central Gulf of California. Analyses of diatoms and silicoflagellates were completed on samples spaced every 40-50 yr, whereas ICP-AES geochemical analyses were completed on alternate samples (sample spacing 80-100 yr). The Bolling-Allerod interval (14.6-12.9 ka) (note, ka refers to 1000 calendar years BP throughout this report) is characterized by an increase in biogenic silica and a decline in calcium carbonate relative to surrounding intervals, suggesting conditions somewhat similar to those of today. The Younger Dryas event (12.9-11.6 ka) is marked by a major drop in biogenic silica and an increase in calcium carbonate. Increasing relative percentage contributions of Azpeitia nodulifera and Dictyocha perlaevis (a tropical diatom and silicoflagellate, respectively) and reduced numbers of the silicoflagellate Octactis pulchra are supportive of reduced upwelling of nutrient-rich waters. Between 10.6 and 10.0 ka, calcium carbonate and A. nodulifera abruptly decline at DSDP 480, while Roperia tesselata, a diatom indicative of winter upwelling in the modern-day Gulf, increases sharply in numbers. A nearly coincident increase in the silicoflagellate Dictyocha stapedia suggests that waters above DSDP 480 were more similar to the cooler and slightly more saline waters of the northern Gulf during much of the early and middle parts of the Holocene (~10 to 3.2 ka). At about 6.2 ka a stepwise increase in biogenic silica and the reappearance of the tropical diatom A. nodulifera marks a major change in oceanographic conditions in the Gulf. A winter shift to more northwesterly winds may have occurred at this time along with the onset of periodic northward excursions (El Nino-driven?) of the North Equatorial Countercurrent during the summer. Beginning between 2.8 and 2.4 ka, the amplitude of biogenic silica and wt% Fe, Al, and Ti (proxies of terrigenous input) increase, possibly reflecting intensification of ENSO cycles and the establishment of modern oceanographic conditions in the Gulf. Increased numbers of O. pulchra after 2.8 ka suggest enhanced spring upwelling.
Resumo:
; High-resolution grain size analyses of three AMS (14)C-dated cores from the Southeastern Brazilian shelf provide a detailed record of mid- to late-Holocene environmental changes in the Southwestern Atlantic Margin. The cores exhibit millennial variability that we associate with the previously described southward shift of the Inter Tropical Convergence Zone (ITCZ) average latitudinal position over the South American continent during the Holocene climatic maximum. This generated changes in the wind-driven current system of the SW Atlantic margin and modified the grain size characteristics of the sediments deposited there. Centennial variations in the grain size are associated with a previously described late-Holocene enhancement of the El Nino-Southern Oscillation (ENSO) amplitude, which led to stronger NNE trade winds off eastern Brazil, favouring SW transport of sediments from the Paraiba do Sul River. This is recorded in a core from off Cabo Frio as a coarsening trend from 3000 cal. BP onwards. The ENSO enhancement also caused changes in precipitation and wind pattern in southern Brazil, allowing high discharge events and northward extensions of the low-saline water plume from Rio de la Plata. We propose that this resulted in a net increase in northward alongshore transport of fine sediments, seen as a prominent fine-shift at 2000 cal. BP in a core from similar to 24 degrees S on the Brazilian shelf. Wavelet-and spectral analysis of the sortable silt records show a significant similar to 1000-yr periodicity, which we attribute to solar forcing. If correct, this is one of the first indications of solar forcing of this timescale on the Southwestern Atlantic margin.
Resumo:
In this study we examine the impact of Indian Ocean sea surface temperature (SST) variability on South American circulation using observations and a suite of numerical experiments forced by a combination of Indian and Pacific SST anomalies. Previous studies have shown that the Indian Ocean Dipole (IOD) mode can affect climate over remote regions across the globe, including over South America. Here we show that such a link exists not only with the IOD, but also with the Indian Ocean basin-wide warming (IOBW). The IOBW, a response to El Nino events, tends to reinforce the South American anomalous circulation in March-to-May associated with the warm events in the Pacific. This leads to increased rainfall in the La Plata basin and decreased rainfall over the northern regions of the continent. In addition, the IOBW is suggested to be an important factor for modulating the persistence of dry conditions over northeastern South America during austral autumn. The link between the IOBW and South American climate occurs via alterations of the Walker circulation pattern and through a mid-latitude wave-train teleconnection.
Resumo:
Fog oases, locally named Lomas, are distributed in a fragmented way along the western coast of Chile and Peru (South America) between ~6°S and 30°S following an altitudinal gradient determined by a fog layer. This fragmentation has been attributed to the hyper aridity of the desert. However, periodically climatic events influence the ‘normal seasonality’ of this ecosystem through a higher than average water input that triggers plant responses (e.g. primary productivity and phenology). The impact of the climatic oscillation may vary according to the season (wet/dry). This thesis evaluates the potential effect of climate oscillations, such as El Niño Southern Oscillation (ENSO), through the analysis of vegetation of this ecosystem following different approaches: Chapters two and three show the analysis of fog oasis along the Peruvian and Chilean deserts. The objectives are: 1) to explain the floristic connection of fog oases analysing their taxa composition differences and the phylogenetic affinities among them, 2) to explore the climate variables related to ENSO which likely affect fog production, and the responses of Lomas vegetation (composition, productivity, distribution) to climate patterns during ENSO events. Chapters four and five describe a fog-oasis in southern Peru during the 2008-2010 period. The objectives are: 3) to describe and create a new vegetation map of the Lomas vegetation using remote sensing analysis supported by field survey data, and 4) to identify the vegetation change during the dry season. The first part of our results show that: 1) there are three significantly different groups of Lomas (Northern Peru, Southern Peru, and Chile) with a significant phylogenetic divergence among them. The species composition reveals a latitudinal gradient of plant assemblages. The species origin, growth-forms typologies, and geographic position also reinforce the differences among groups. 2) Contradictory results have emerged from studies of low-cloud anomalies and the fog-collection during El Niño (EN). EN increases water availability in fog oases when fog should be less frequent due to the reduction of low-clouds amount and stratocumulus. Because a minor role of fog during EN is expected, it is likely that measurements of fog-water collection during EN are considering drizzle and fog at the same time. Although recent studies on fog oases have shown some relationship with the ENSO, responses of vegetation have been largely based on descriptive data, the absence of large temporal records limit the establishment of a direct relationship with climatic oscillations. The second part of the results show that: 3) five different classes of different spectral values correspond to the main land cover of Lomas using a Vegetation Index (VI). The study case is characterised by shrubs and trees with variable cover (dense, semi-dense and open). A secondary area is covered by small shrubs where the dominant tree species is not present. The cacti area and the old terraces with open vegetation were not identified with the VI. Agriculture is present in the area. Finally, 4) contrary to the dry season of 2008 and 2009 years, a higher VI was obtained during the dry season of 2010. The VI increased up to three times their average value, showing a clear spectral signal change, which coincided with the ENSO event of that period.
Resumo:
Successful conservation of tropical montane forest, one of the most threatened ecosystems on earth, requires detailed knowledge of its biogeochemistry. Of particular interest is the response of the biogeochemical element cycles to external influences such as element deposition or climate change. Therefore the overall objective of my study was to contribute to improved understanding of role and functioning of the Andean tropical montane forest. In detail, my objectives were to determine (1) the role of long-range transported aerosols and their transport mechanisms, and (2) the role of short-term extreme climatic events for the element budget of Andean tropical forest. In a whole-catchment approach including three 8-13 ha microcatchments under tropical montane forest on the east-exposed slope of the eastern cordillera in the south Ecuadorian Andes at 1850-2200 m above sea level I monitored at least in weekly resolution the concentrations and fluxes of Ca, Mg, Na, K, NO3-N, NH4-N, DON, P, S, TOC, Mn, and Al in bulk deposition, throughfall, litter leachate, soil solution at the 0.15 and 0.3 m depths, and runoff between May 1998 and April 2003. I also used meteorological data from my study area collected by cooperating researchers and the Brazilian meteorological service (INPE), as well as remote sensing products of the North American and European space agencies NASA and ESA. My results show that (1) there was a strong interannual variation in deposition of Ca [4.4-29 kg ha-1 a-1], Mg [1.6-12], and K [9.8-30]) between 1998 and 2003. High deposition changed the Ca and Mg budgets of the catchments from loss to retention, suggesting that the additionally available Ca and Mg was used by the ecosystem. Increased base metal deposition was related to dust outbursts of the Sahara and an Amazonian precipitation pattern with trans-regional dry spells allowing for dust transport to the Andes. The increased base metal deposition coincided with a strong La Niña event in 1999/2000. There were also significantly elevated H+, N, and Mn depositions during the annual biomass burning period in the Amazon basin. Elevated H+ deposition during the biomass burning period caused elevated base metal loss from the canopy and the organic horizon and deteriorated already low base metal supply of the vegetation. Nitrogen was only retained during biomass burning but not during non-fire conditions when deposition was much smaller. Therefore biomass burning-related aerosol emissions in Amazonia seem large enough to substantially increase element deposition at the western rim of Amazonia. Particularly the related increase of acid deposition impoverishes already base-metal scarce ecosystems. As biomass burning is most intense during El Niño situations, a shortened ENSO cycle because of global warming likely enhances the acid deposition at my study forest. (2) Storm events causing near-surface water flow through C- and nutrient-rich topsoil during rainstorms were the major export pathway for C, N, Al, and Mn (contributing >50% to the total export of these elements). Near-surface flow also accounted for one third of total base metal export. This demonstrates that storm-event related near-surface flow markedly affects the cycling of many nutrients in steep tropical montane forests. Changes in the rainfall regime possibly associated with global climate change will therefore also change element export from the study forest. Element budgets of Andean tropical montane rain forest proved to be markedly affected by long-range transport of Saharan dust, biomass burning-related aerosols, or strong rainfalls during storm events. Thus, increased acid and nutrient deposition and the global climate change probably drive the tropical montane forest to another state with unknown consequences for its functions and biological diversity.
Resumo:
Bivalve mollusk shells are useful tools for multi-species and multi-proxy paleoenvironmental reconstructions with a high temporal and spatial resolution. Past environmental conditions can be reconstructed from shell growth and stable oxygen and carbon isotope ratios, which present an archive for temperature, freshwater fluxes and primary productivity. The purpose of this thesis is the reconstruction of Holocene climate and environmental variations in the North Pacific with a high spatial and temporal resolution using marine bivalve shells. This thesis focuses on several different Holocene time periods and multiple regions in the North Pacific, including: Japan, Alaska (AK), British Columbia (BC) and Washington State, which are affected by the monsoon, Pacific Decadal Oscillation (PDO) and El Niño/Southern Oscillation (ENSO). Such high-resolution proxy data from the marine realm of mid- and high-latitudes are still rare. Therefore, this study contributes to the optimization and verification of climate models. However, before using bivalves for environmental reconstructions and seasonality studies, life history traits must be well studied to temporally align and interpret the geochemical record. These calibration studies are essential to ascertain the usefulness of selected bivalve species as paleoclimate proxy archives. This work focuses on two bivalve species, the short-lived Saxidomus gigantea and the long-lived Panopea abrupta. Sclerochronology and oxygen isotope ratios of different shell layers of P. abrupta were studied in order to test the reliability of this species as a climate archive. The annual increments are clearly discernable in umbonal shell portions and the increments widths should be measured in these shell portions. A reliable reconstruction of paleotemperatures may only be achieved by exclusively sampling the outer shell layer of multiple contemporaneous specimens. Life history traits (e.g., timing of growth line formation, duration of the growing season and growth rates) and stable isotope ratios of recent S. gigantea from AK and BC were analyzed in detail. Furthermore, a growth-temperature model based on S. gigantea shells from Alaska was established, which provides a better understanding of the hydrological changes related to the Alaska Coastal Current (ACC). This approach allows the independent measurement of water temperature and salinity from variations in the width of lunar daily growth increments of S. gigantea. Temperature explains 70% of the variability in shell growth. The model was calibrated and tested with modern shells and then applied to archaeological specimens. The time period between 988 and 1447 cal yrs BP was characterized by colder (~1-2°C) and much drier (2-5 PSU) summers, and a likely much slower flowing ACC than at present. In contrast, the summers during the time interval of 599-1014 cal yrs BP were colder (up to 3°C) and fresher (1-2 PSU) than today. The Aleutian Low may have been stronger and the ACC was probably flowing faster during this time.
Resumo:
Standard procedures for forecasting flood risk (Bulletin 17B) assume annual maximum flood (AMF) series are stationary, meaning the distribution of flood flows is not significantly affected by climatic trends/cycles, or anthropogenic activities within the watershed. Historical flood events are therefore considered representative of future flood occurrences, and the risk associated with a given flood magnitude is modeled as constant over time. However, in light of increasing evidence to the contrary, this assumption should be reconsidered, especially as the existence of nonstationarity in AMF series can have significant impacts on planning and management of water resources and relevant infrastructure. Research presented in this thesis quantifies the degree of nonstationarity evident in AMF series for unimpaired watersheds throughout the contiguous U.S., identifies meteorological, climatic, and anthropogenic causes of this nonstationarity, and proposes an extension of the Bulletin 17B methodology which yields forecasts of flood risk that reflect climatic influences on flood magnitude. To appropriately forecast flood risk, it is necessary to consider the driving causes of nonstationarity in AMF series. Herein, large-scale climate patterns—including El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO)—are identified as influencing factors on flood magnitude at numerous stations across the U.S. Strong relationships between flood magnitude and associated precipitation series were also observed for the majority of sites analyzed in the Upper Midwest and Northeastern regions of the U.S. Although relationships between flood magnitude and associated temperature series are not apparent, results do indicate that temperature is highly correlated with the timing of flood peaks. Despite consideration of watersheds classified as unimpaired, analyses also suggest that identified change-points in AMF series are due to dam construction, and other types of regulation and diversion. Although not explored herein, trends in AMF series are also likely to be partially explained by changes in land use and land cover over time. Results obtained herein suggest that improved forecasts of flood risk may be obtained using a simple modification of the Bulletin 17B framework, wherein the mean and standard deviation of the log-transformed flows are modeled as functions of climate indices associated with oceanic-atmospheric patterns (e.g. AMO, ENSO, NAO, and PDO) with lead times between 3 and 9 months. Herein, one-year ahead forecasts of the mean and standard deviation, and subsequently flood risk, are obtained by applying site specific multivariate regression models, which reflect the phase and intensity of a given climate pattern, as well as possible impacts of coupling of the climate cycles. These forecasts of flood risk are compared with forecasts derived using the existing Bulletin 17B model; large differences in the one-year ahead forecasts are observed in some locations. The increased knowledge of the inherent structure of AMF series and an improved understanding of physical and/or climatic causes of nonstationarity gained from this research should serve as insight for the formulation of a physical-casual based statistical model, incorporating both climatic variations and human impacts, for flood risk over longer planning horizons (e.g., 10-, 50, 100-years) necessary for water resources design, planning, and management.
Resumo:
The past decade has brought significant advancements in seasonal climate forecasting. However, water resources decision support and management continues to be based almost entirely on historical observations and does not take advantage of climate forecasts. This study builds on previous work that conditioned streamflow ensemble forecasts on observable climate indicators, such as the El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) for use in a decision support model for the Highland Lakes multi-reservoir system in central Texas operated by the Lower Colorado River Authority (LCRA). In the current study, seasonal soil moisture is explored as a climate indicator and predictor of annual streamflow for the LCRA region. The main purpose of this study is to evaluate the correlation of fractional soil moisture with streamflow using the 1950-2000 Variable Infiltration Capacity (VIC) Retrospective Land Surface Data Set over the LCRA region. Correlations were determined by examining different annual and seasonal combinations of VIC modeled fractional soil moisture and observed streamflow. The applicability of the VIC Retrospective Land Surface Data Set as a data source for this study is tested along with establishing and analyzing patterns of climatology for the watershed study area using the selected data source (VIC model) and historical data. Correlation results showed potential for the use of soil moisture as a predictor of streamflow over the LCRA region. This was evident by the good correlations found between seasonal soil moisture and seasonal streamflow during coincident seasons as well as between seasonal and annual soil moisture with annual streamflow during coincident years. With the findings of good correlation between seasonal soil moisture from the VIC Retrospective Land Surface Data Set with observed annual streamflow presented in this study, future research would evaluate the application of NOAA Climate Prediction Center (CPC) forecasts of soil moisture in predicting annual streamflow for use in the decision support model for the LCRA.