939 resultados para ENDOPLASMIC-RETICULUM STRESS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Key points center dot Active calcium signal propagation occurs when an initial calcium trigger elicits calcium release through endoplasmic reticulum (ER) receptors. A high concentration of the calcium trigger in thin-calibre dendrites would suppress release of calcium through hippocampal inositol trisphosphate receptors (InsP3Rs). center dot Could the high-density expression of A-type K+ channels in thin-calibre dendrites be a mechanism for inhibiting this suppression, thereby restoring the utility of the ER as a substrate for active calcium propagation? center dot Quantitative analyses involving experimentally constrained models reveal a bell-shaped dependence of calcium released through InsP3Rs on the A-type K+ channel density, during the propagation of a calcium wave. center dot A-type K+ channels regulated the relative contribution of ER calcium to the induction of synaptic plasticity in the presence of model metabotropic glutamate receptors. center dot These results identify a novel form of interaction between active dendrites and the ER membrane and suggest that A-type K+ channels are ideally placed for inhibiting the suppression of InsP3Rs in thin-calibre dendrites. Abstract The A-type potassium current has been implicated in the regulation of several physiological processes. Here, we explore a role for the A-type potassium current in regulating the release of calcium through inositol trisphosphate receptors (InsP3R) that reside on the endoplasmic reticulum (ER) of hippocampal pyramidal neurons. To do this, we constructed morphologically realistic, conductance-based models equipped with kinetic schemes that govern several calcium signalling modules and pathways, and constrained the distributions and properties of constitutive components by experimental measurements from these neurons. Employing these models, we establish a bell-shaped dependence of calcium release through InsP3Rs on the density ofA-type potassium channels, during the propagation of an intraneuronal calcium wave initiated through established protocols. Exploring the sensitivities of calcium wave initiation and propagation to several underlying parameters, we found that ER calcium release critically depends on dendritic diameter and that wave initiation occurred at branch points as a consequence of a high surface area to volume ratio of oblique dendrites. Furthermore, analogous to the role ofA-type potassium channels in regulating spike latency, we found that an increase in the density ofA-type potassium channels led to increases in the latency and the temporal spread of a propagating calcium wave. Next, we incorporated kinetic models for the metabotropic glutamate receptor (mGluR) signalling components and a calcium-controlled plasticity rule into our model and demonstrate thatthe presence of mGluRs induced a leftward shift in a BienenstockCooperMunro-like synaptic plasticity profile. Finally, we show that the A-type potassium current could regulate the relative contribution of ER calcium to synaptic plasticity induced either through 900 pulses of various stimulus frequencies or through theta burst stimulation. Our results establish a novel form of interaction between active dendrites and the ER membrane, uncovering a powerful mechanism that could regulate biophysical/biochemical signal integration and steer the spatiotemporal spread of signalling microdomains through changes in dendritic excitability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Host cell remodelling is a hallmark of malaria pathogenesis. It involves protein folding, unfolding and trafficking events and thus participation of chaperones such as Hsp70s and Hsp40s is well speculated. Until recently, only Hsp40s were thought to be the sole representative of the parasite chaperones in the exportome. However, based on the re-annotated Plasmodium falciparum genome sequence, a putative candidate for exported Hsp70 has been reported, which otherwise was known to be a pseudogene. We raised a specific antiserum against a C-terminal peptide uniquely present in PfHsp70-x. Immunoblotting and immunofluorescence-based approaches in combination with sub-cellular fractionation by saponin and streptolysin-O have been taken to determine the expression and localization of PfHsp70-x in infected erythrocyte. The re-annotated sequence of PfHsp70-x reveals it to be a functional protein with an endoplasmic reticulum signal peptide. It gets maximally expressed at the schizont stage of intra-erythrocytic life cycle. Majority of the protein localizes to the parasitophorous vacuole and some of it gets exported to the erythrocyte compartment where it associates with Maurer's clefts. The identification of an exported parasite Hsp70 chaperone presents us with the fact that the parasite has evolved customized chaperones which might be playing crucial roles in aspects of trafficking and host cell remodelling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ferrocene-conjugated copper(II) complexes Cu(Fc-aa)(aip)](ClO4) (1-3) and (Cu(Fc-aa)(pyip)](ClO4) (4-6) of L-amino acid reduced Schiff bases (Fc-aa), 2-(9-anthryl)-1H-imidazo4,5-f]1,10]phenanthroline (aip) and 2-(1-pyrenyl)-1H-imidazo4,5-f] 1,10]phenanthroline (pyip), where Fc-aa is ferrocenylmethyl-L-tyrosine (Fc-Tyr in 1, 4), ferrocenylmethyl-L-tryptophan (Fc-Trp in 2, 5) and ferrocenylmethyl-L-methionine (Fc-Met in 3, 6), were prepared and characterized, and their photocytotoxicity was studied (Fc = ferrocenyl moiety). Phenyl analogues, viz. (Cu(Ph-Met)(aip)](ClO4) (7) and (Cu(Ph-Met)(pyip)](ClO4) (8), were prepared and used as control compounds. The bis-imidazophenanthroline copper(II) complexes, viz. (Cu(aip)(2)(NO3)](NO3) (9) and Cu(pyip)(2)(NO3)](NO3) (10), were also prepared and used as controls. Complexes 1-6 having a redox inactive cooper(II) center showed the Fc(+)-Fc redox couple at similar to 0.5 V vs. SCE in DMF-0.1 mol (Bu4N)-N-n](ClO4). The copper(II)-based d-d band was observed near 600 nm in DMF-Tris-HCl buffer (1 :1 v/v). The ferrocenyl complexes showed low dark toxicity, but remarkably high photocytotoxicity in human cervical HeLa and human breast adenocarcinoma MCF-7 cancer cells giving an excellent photo-dynamic effect while their phenyl analogues were inactive. The photo-exposure caused significant morphological changes in the cancer cells when compared to the non-irradiated ones. The photophysical processes were rationalized from the theoretical studies. Fluorescence microscopic images showed 3 and 6 localizing predominantly in the endoplasmic reticulum (ER) of the cancer cells, thus minimizing any undesirable effects involving nuclear DNA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Iron(III) complexes of pyridoxal (vitamin B6, VB6) or salicylaldehyde Schiff bases and modified dipicolylamines, namely, Fe(B)(L)](NO3) (15), where B is phenyl-N,N-bis((pyridin-2-yl)methyl)methanamine (phbpa in 1), (anthracen-9-yl)-N,N-bis((pyridin-2-yl)methyl)methanamine (anbpa in 2, 4) and (pyren-1-yl)-N,N-bis((pyridin-2-yl)methyl)methanamine (pybpa in 3, 5) (H2L1 is 3-hydroxy-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylp yridine (13) and H2L2 is 2-(2-hydroxyphenyl-imino)methyl]phenol), were prepared and their uptake in cancer cells and photocytotoxicity were studied. Complexes 4 and 5, having a non-pyridoxal Schiff base, were prepared to probe the role of the pyridoxal group in tumor targeting and cellular uptake. The PF6 salt (1a) of complex 1 is structurally characterized. The complexes have a distorted six-coordinate FeN4O2 core where the metal is in the +3 oxidation state with five unpaired electrons. The complexes display a ligand to metal charge transfer band near 520 and 420 nm from phenolate to the iron(III) center. The photophysical properties of the complexes are explained from the time dependent density functional theory calculations. The redox active complexes show a quasi-reversible Fe(III)/Fe(II) response near -0.3 V vs saturated calomel electrode. Complexes 2 and 3 exhibit remarkable photocytotoxicity in various cancer cells with IC50 values ranging from 0.4 to 5 mu M with 10-fold lower dark toxicity. The cell death proceeded by the apoptotic pathway due to generation of reactive oxygen species upon light exposure. The nonvitamin complexes 4 and 5 display 3-fold lower photocytotoxicity compared to their VB6 analogues, possibly due to preferential and faster uptake of the vitamin complexes in the cancer cells. Complexes 2 and 3 show significant uptake in the endoplasmic reticulum, while complexes 4 and 5 are distributed throughout the cells without any specific localization pattern.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The synaptic plasticity literature has focused on establishing necessity and sufficiency as two essential and distinct features in causally relating a signaling molecule to plasticity induction, an approach that has been surprisingly lacking in the intrinsic plasticity literature. In this study, we complemented the recently established necessity of inositol trisphosphate (InsP(3)) receptors (InsP(3)R) in a form of intrinsic plasticity by asking if InsP(3)R activation was sufficient to induce intrinsic plasticity in hippocampal neurons. Specifically, incorporation of D-myo-InsP(3) in the recording pipette reduced input resistance, maximal impedance amplitude, and temporal summation but increased resonance frequency, resonance strength, sag ratio, and impedance phase lead. Strikingly, the magnitude of plasticity in all these measurements was dependent on InsP 3 concentration, emphasizing the graded dependence of such plasticity on InsP(3)R activation. Mechanistically, we found that this InsP(3)-induced plasticity depended on hyperpolarization-activated cyclic nucleotide-gated channels. Moreover, this calcium-dependent form of plasticity was critically reliant on the release of calcium through InsP(3)Rs, the influx of calcium through N-methyl-D-aspartate receptors and voltage-gated calcium channels, and on the protein kinase A pathway. Our results delineate a causal role for InsP(3)Rs in graded adaptation of neuronal response dynamics, revealing novel regulatory roles for the endoplasmic reticulum in neural coding and homeostasis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plant viruses exploit the host machinery for targeting the viral genome-movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein la (PDLP la) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER-GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER-GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130-138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm interacts with NP via its N-terminal unfolded region and the NSm-NP complex could in turn interact with the ER membrane via the C-terminal coiled coil domain of NSm to form vesicles that are targeted to PD and there by assist the cell to cell movement of the viral genome complex. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cdc48/p97 is an essential, highly abundant hexameric member of the AAA (ATPase associated with various cellular activities) family. It has been linked to a variety of processes throughout the cell but it is best known for its role in the ubiquitin proteasome pathway. In this system it is believed that Cdc48 behaves as a segregase, transducing the chemical energy of ATP hydrolysis into mechanical force to separate ubiquitin-conjugated proteins from their tightly-bound partners.

Current models posit that Cdc48 is linked to its substrates through a variety of adaptor proteins, including a family of seven proteins (13 in humans) that contain a Cdc48-binding UBX domain. As such, due to the complexity of the network of adaptor proteins for which it serves as the hub, Cdc48/p97 has the potential to exert a profound influence on the ubiquitin proteasome pathway. However, the number of known substrates of Cdc48/p97 remains relatively small, and smaller still is the number of substrates that have been linked to a specific UBX domain protein. As such, the goal of this dissertation research has been to discover new substrates and better understand the functions of the Cdc48 network. With this objective in mind, we established a proteomic screen to assemble a catalog of candidate substrate/targets of the Ubx adaptor system.

Here we describe the implementation and optimization of a cutting-edge quantitative mass spectrometry method to measure relative changes in the Saccharomyces cerevisiae proteome. Utilizing this technology, and in order to better understand the breadth of function of Cdc48 and its adaptors, we then performed a global screen to identify accumulating ubiquitin conjugates in cdc48-3 and ubxΔ mutants. In this screen different ubx mutants exhibited reproducible patterns of conjugate accumulation that differed greatly from each other, pointing to various unexpected functional specializations of the individual Ubx proteins.

As validation of our mass spectrometry findings, we then examined in detail the endoplasmic-reticulum bound transcription factor Spt23, which we identified as a putative Ubx2 substrate. In these studies ubx2Δ cells were deficient in processing of Spt23 to its active p90 form, and in localizing p90 to the nucleus. Additionally, consistent with reduced processing of Spt23, ubx2Δ cells demonstrated a defect in expression of their target gene OLE1, a fatty acid desaturase. Overall, this work demonstrates the power of proteomics as a tool to identify new targets of various pathways and reveals Ubx2 as a key regulator lipid membrane biosynthesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Efficient and accurate localization of membrane proteins is essential to all cells and requires a complex cascade of interactions between protein machineries. This is exemplified in the recently discovered Guided Entry of Tail-anchored protein pathway, in which the central targeting factor Get3 must sequentially interact with three distinct binding partners (Get4, Get1 and Get2) to ensure the targeted delivery of Tail-anchored proteins to the endoplasmic reticulum membrane. To understand the molecular and energetic principles that provide the vectorial driving force of these interactions, we used a quantitative fluorescence approach combined with mechanistic enzymology to monitor the effector interactions of Get3 at each stage of Tail-anchored protein targeting. We show that nucleotide and membrane protein substrate generate a gradient of interaction energies that drive the cyclic and ordered transit of Get3 from Get4 to Get2 and lastly to Get1. These data also define how the Get3/Tail-anchored complex is captured, handed over, and disassembled by the Get1/2 receptor at the membrane, and reveal a novel role for Get4/5 in recycling Get3 from the endoplasmic reticulum membrane at the end of the targeting reaction. These results provide general insights into how complex cascades of protein interactions are coordinated and coupled to energy inputs in biological systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Signal recognition particle (SRP) and signal recognition particle receptor (SR) are evolutionarily conserved GTPases that deliver secretory and membrane proteins to the protein-conducting channel Sec61 complex in the lipid bilayer of the endoplasmic reticulum in eukaryotes or the SecYEG complex in the inner membrane of bacteria. Unlike the canonical Ras-type GTPases, SRP and SR are activated via nucleotide-dependent heterodimerization. Upon formation of the SR•SRP targeting complex, SRP and SR undergo a series of discrete conformational changes that culminate in their reciprocal activation and hydrolysis of GTP. How the SR•SRP GTPase cycle is regulated and coupled to the delivery of the cargo protein to the protein-conducting channel at the target membrane is not well-understood. Here we examine the role of the lipid bilayer and SecYEG in regulation of the SRP-mediated protein targeting pathway and show that they serve as important biological cues that spatially control the targeting reaction.

In the first chapter, we show that anionic phospholipids of the inner membrane activate the bacterial SR, FtsY, and favor the late conformational states of the targeting complex conducive to efficient unloading of the cargo. The results of our studies suggest that the lipid bilayer acts as a spatial cue that weakens the interaction of the cargo protein with SRP and primes the complex for unloading its cargo onto SecYEG.

In the second chapter, we focus on the effect of SecYEG on the conformational states and activity of the targeting complex. While phospholipids prime the complex for unloading its cargo, they are insufficient to trigger hydrolysis of GTP and the release of the cargo from the complex. SecYEG modulates the conformation of the targeting complex and triggers the GTP hydrolysis from the complex, thus driving the targeting reaction to completion. The results of this study suggest that SecYEG is not a passive recipient of the cargo protein; rather, it actively releases the cargo from the targeting complex. Together, anionic phospholipids and SecYEG serve distinct yet complementary roles. They spatially control the targeting reaction in a sequential manner, ensuring efficient delivery and unloading of the cargo protein.

In the third chapter, we reconstitute the transfer reaction in vitro and visualize it in real time. We show that the ribosome-nascent chain complex is transferred to SecYEG via a stepwise mechanism with gradual dissolution and formation of the contacts with SRP and SecYEG, respectively, explaining how the cargo is kept tethered to the membrane during the transfer and how its loss to the cytosol is avoided.

In the fourth chapter, we examine interaction of SecYEG with secretory and membrane proteins and attempt to address the role of a novel insertase YidC in this interaction. We show that detergent-solubilized SecYEG is capable of discriminating between the nascent chains of various lengths and engages a signal sequence in a well-defined conformation in the absence of accessory factors. Further, YidC alters the conformation of the signal peptide bound to SecYEG. The results described in this chapter show that YidC affects the SecYEG-nascent chain interaction at early stages of translocation/insertion and suggest a YidC-facilitated mechanism for lateral exit of transmembrane domains from SecYEG into the lipid bilayer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

GPI-anchored neurotoxin-like receptor binding proteins, such as lynx modulators, are topologically positioned to exert pharmacological effects by binding to the extracellular portion of nAChRs. These actions are generally thought to proceed when both lynx and the nAChRs are on the plasma membrane. Here, we demonstrate that lynx1 also exerts effects on α4β2 nAChRs within the endoplasmic reticulum. Lynx affects assembly of nascent α4 and β2 subunits, and alters the stoichiometry of the population that reaches the plasma membrane. Additionally, these data suggest that lynx1 alters nAChR stoichiometry primarily through this intracellular interaction, rather than via effects on plasma membrane nAChRs. To our knowledge, these data represent the first test of the hypothesis that a lynx family member, or indeed any GPI-anchored protein, could act within the cell to alter assembly of multi-subunit protein.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The proper targeting of membrane proteins is essential to the viability of all cells. Tail-anchored (TA) proteins, defined as having a single transmembrane helix at their C-terminus, are post-translationally targeted to the endoplasmic reticulum (ER) membrane by the GET pathway (Guided Entry of TA proteins). In the yeast pathway, the handover of TA substrates is mediated by the heterotetrameric Get4/Get5 (Get4/5) complex, which tethers the co-chaperone Sgt2 to the central targeting factor, the Get3 ATPase. Although binding of Get4/5 to Get3 is critical for efficient TA targeting, the mechanisms by which Get4 regulates Get3 are unknown. To understand the molecular basis of Get4 function, we used a combination of structural biology, biochemistry, and cell biology. Get4/5 binds across the Get3 dimer interface, in an orientation only compatible with a closed Get3, providing insight into the role of nucleotide in complex formation. Additionally, this structure reveals two functionally distinct binding interfaces for anchoring and ATPase regulation, and loss of the regulatory interface leads to strong defects in vitro and in vivo. Additional crystal structures of the Get3-Get4/5 complex give rise to an alternate conformation, which represents an initial binding interaction mediated by electrostatics that facilitates the rate of subsequent inhibited complex formation. This interface is supported by an in-depth kinetic analysis of the Get3-Get4/5 interaction confirming the two-step complex formation. These results allow us to generate a refined model for Get4/5 function in TA targeting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A doença de Parkinson (DP) é a desordem neurodegenerativa motora mais frequente, com uma prevalência de, aproximadamente, 1% entre indivíduos com mais de 60 anos de idade, aumentando para 4 a 5% entre os indivíduos com idade superior a 85 anos. Esta condição é caracterizada pela perda seletiva dos neurônios dopaminérgicos da substância negra e pela presença de inclusões protéicas ricas em α-sinucleína nos neurônios sobreviventes. Pouco se sabe sobre a etiologia e a patogênese da DP. A maioria dos casos aparece esporadicamente, podendo estar associados a diversos fatores de risco ambientais e genéticos. Na última década, estudos de ligação identificaram 15 loci cromossômicos (PARK1 a PARK15) relacionados à DP e, nestes, um novo gene, ATP13A2, tem sido associado a casos de DP de início precoce. Esse gene está situado no 1p36 e codifica a proteína ATPase tipo-P da subfamília P5, de localização lisossômica, que é expressa em diversos tecidos, principalmente no cérebro. Mutações em ATP13A2 levam à formação de proteínas truncadas que ficam retidas no reticulo endoplasmático e posteriormente são degradadas pelo proteossomo, podendo causar a disfunção proteossômica, decorrente da sobrecarga gerada pela proteína mutante, ou causar a disfunção lisossômica, ambas gerando agregação tóxica. Este trabalho tem como objetivo realizar a análise molecular do gene ATP13A2 em uma amostra de 116 pacientes brasileiros com DP, de manifestação precoce (<50 anos), de forma a avaliar se mutações neste gene representam um fator de risco para a DP. O DNA foi extraído a partir de leucócitos do sangue periférico ou de saliva e a análise molecular dos éxons 2, 3, 12, 13, 14, 15, 16, 26 e 27, bem como, dos limites íntronéxons foi realizada por sequenciamento automático dos produtos da PCR. Identificamos oito variantes de sequência: quatro variantes intrônicas (uma no íntron 2, uma no íntron 13 e duas no íntron 27) e quatro variantes silenciosas (uma no éxon 3, 16, 26 e 27). Com base em dados da literatura e através de análises in silico e comparação com amostras controle, classificamos a alteração intrônica c.3084- 3C>T, e as alterações silenciosas c.2970G>A e c.3192C>T como não patogênicas; as alterações intrônicas c.106-30G>T, c.1306+42_1306+43 insC e c.3083+24C>T, e as alterações silenciosas c.132A>G e c.1610G>T foram classificadas como provavelmente não patogênicas. Nosso achados corroboram àqueles encontrados em outras populações e indicam que mutações no gene ATP13A2 não são uma causa comum de DP na amostra de pacientes brasileiros analisados. No entanto, se faz necessário estender nossas análises para outras regiões gênicas, a fim de determinar o real papel deste gene na etiologia da DP em nossa população.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Kv7.2 (KCNQ2) is the principal molecular component of the slow voltage gated M-channel, which strongly influences neuronal excitability. Calmodulin (CaM) binds to two intracellular C-terminal segments of Kv7.2 channels, helices A and B, and it is required for exit from the endoplasmic reticulum. However, the molecular mechanisms by which CaM controls channel trafficking are currently unknown. Here we used two complementary approaches to explore the molecular events underlying the association between CaM and Kv7.2 and their regulation by Ca2+. First, we performed a fluorometric assay using dansylated calmodulin (D-CaM) to characterize the interaction of its individual lobes to the Kv7.2 CaM binding site (Q2AB). Second, we explored the association of Q2AB with CaM by NMR spectroscopy, using N-15-labeled CaM as a reporter. The combined data highlight the interdependency of the N- and C-lobes of CaM in the interaction with Q2AB, suggesting that when CaM binds Ca2+ the binding interface pivots between the N-lobe whose interactions are dominated by helix B and the C-lobe where the predominant interaction is with helix A. In addition, Ca2+ makes CaM binding to Q2AB more difficult and, reciprocally, the channel weakens the association of CaM with Ca2+.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BCL-2 family proteins are key regulators of the mitochondrial apoptotic machinery, controlling the mitochondrial outer membrane (MOM) permeabilization (MOMP). BCL-2 related Ovarian Killer (BOK) is a poorly understood pro-apoptotic member of this protein family. It has been reported that BOK localizes predominantly (although not exclusively) at membranes of the endoplasmic reticulum and of the Golgi apparatus. However, it is unclear whether BOK also operates at the MOM to promote apoptosis, as other pro-apoptotic BCL-2 family members do. Basing on the fact that the other two BAX-like pro-apoptotic members have been reported to oligomerize in order to induce MOMP, site-directed mutagenesis was used to generate two point mutations that predictably eliminated BOK’s oligomerization capacity. Then, the effect of such mutations on BOK’s membrane activity was examined using fluorescence spectroscopy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The distribution pattern of exocrine pancreas in Labeo rohita besides its general location along the course of intestinal mesentery was studied. It is evenly distributed within the liver around portal vessels and also within the spleen near a blood vessel. On ultrastructure, two cell types of different degrees of staining intensities containing abundant rough endoplasmic reticulum, mitochondria, pre-zymogen and zymogen granules were marked. During aflatoxicosis, the mesenteric pancreas and hepatic pancreas were mostly affected revealing necrotic changes to acini. The zymogen granular activities were markedly reduced. Ultra structurally, the rough endoplasmic reticulum was fully dilated and formed whorled pattern. The damage to the exocrine pancreas might be affecting digestive enzymes' secretion which may be one of the causes of aflatoxin-induced anorexia in fish.