460 resultados para EMBRYOLOGY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

NK1.1+TCR alpha beta+ (NK1+) T cells are an unusual subset of mouse TCR alpha beta+ cells found primarily in adult thymus and liver. In contrast to conventional TCR alpha beta+ cells, NK1+ T cells have a TCR repertoire that is highly skewed to V alpha14 and to Vbeta8, -7, and -2. The developmental origin and ligand specificity of NK1+ T cells are controversial. We show here that NK1+ T cells with a typically biased V alpha and V beta repertoire develop in cytokine-supplemented suspension cultures of fetal liver established from either normal or athymic mice. Furthermore, NK1+ T cell development in fetal liver cultures is abrogated in beta2m-deficient mice (which lack MHC class I and other related molecules) and can be partially inhibited by the presence of anti-CD1 mAbs. Moreover, mixing experiments indicate that recombination-deficient SCID fetal liver cells can reconstitute NK1+ T cell development in beta2m-deficient fetal liver cultures. Collectively, our data demonstrate that NK1+ T cells can develop extrathymically from fetal liver precursors and that a beta2m-associated ligand (putatively CD1) present on nonlymphoid cells is essential for their positive selection and/or expansion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The in vivo accessibility of the chick embryo makes it a favoured model system for experimental developmental biology. Although the range of available techniques now extends to miss-expression of genes through in ovo electroporation, it remains difficult to knock out individual gene expression. Recently, the possibility of silencing gene expression by RNAi in chick embryos has been reported. However, published studies show only discrete quantitative differences in the expression of the endogenous targeted genes and unclear morphological alterations. To elucidate whether the tools currently available are adequate to silence gene expression sufficiently to produce a clear and specific null-like mutant phenotype, we have performed several experiments with different molecules that trigger RNAi: dsRNA, siRNA, and shRNA produced from a plasmid coexpressing green fluorescent protein as an internal marker. Focussing on fgf8 expression in the developing isthmus, we show that no morphological defects are observed, and that fgf8 expression is neither silenced in embryos microinjected with dsRNA nor in embryos microinjected and electroporated with a pool of siRNAs. Moreover, fgf8 expression was not significantly silenced in most isthmic cells transformed with a plasmid producing engineered shRNAs to fgf8. We also show that siRNA molecules do not spread significantly from cell to cell as reported for invertebrates, suggesting the existence of molecular differences between different model systems that may explain the different responses to RNAi. Although our results are basically in agreement with previously reported studies, we suggest, in contrast to them, that with currently available tools and techniques the number of cells in which fgf8 gene expression is decreased, if any, is not sufficient to generate a detectable mutant phenotype, thus making RNAi useless as a routine method for functional gene analysis in chick embryos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Nolz1 is a zinc finger transcription factor whose expression is enriched in the lateral ganglionic eminence (LGE), although its function is still unknown. Results: Here we analyze the role of Nolz1 during LGE development. We show that Nolz1 expression is high in proliferating neural progenitor cells (NPCs) of the LGE subventricular zone. In addition, low levels of Nolz1 are detected in the mantle zone, as well as in the adult striatum. Similarly, Nolz1 is highly expressed in proliferating LGE-derived NPC cultures, but its levels rapidly decrease upon cell differentiation, pointing to a role of Nolz1 in the control of NPC proliferation and/or differentiation. In agreement with this hypothesis, we find that Nolz1 over-expression promotes cell cycle exit of NPCs in neurosphere cultures and negatively regulates proliferation in telencephalic organotypic cultures. Within LGE primary cultures, Nolz1 over-expression promotes the acquisition of a neuronal phenotype, since it increases the number of β-III tubulin (Tuj1)- and microtubule-associated protein (MAP)2-positive neurons, and inhibits astrocyte generation and/or differentiation. Retinoic acid (RA) is one of the most important morphogens involved in striatal neurogenesis, and regulates Nolz1 expression in different systems. Here we show that Nolz1 also responds to this morphogen in E12.5 LGE-derived cell cultures. However, Nolz1 expression is not regulated by RA in E14.5 LGE-derived cell cultures, nor is it affected during LGE development in mouse models that present decreased RA levels. Interestingly, we find that Gsx2, which is necessary for normal RA signaling during LGE development, is also required for Nolz1 expression, which is lost in Gsx2 knockout mice. These findings suggest that Nolz1 might act downstream of Gsx2 to regulate RA-induced neurogenesis. Keeping with this hypothesis, we show that Nolz1 induces the selective expression of the RA receptor (RAR)β without altering RARα or RARγ. In addition, Nozl1 over-expression increases RA signaling since it stimulates the RA response element. This RA signaling is essential for Nolz1-induced neurogenesis, which is impaired in a RA-free environment or in the presence of a RAR inverse agonist. It has been proposed that Drosophila Gsx2 and Nolz1 homologues could cooperate with the transcriptional co-repressors Groucho-TLE to regulate cell proliferation. In agreement with this view, we show that Nolz1 could act in collaboration with TLE-4, as they are expressed at the same time in NPC cultures and during mouse development. Conclusions: Nolz1 promotes RA signaling in the LGE, contributing to the striatal neurogenesis during development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The zona limitans intrathalamica (ZLI) and the isthmus organizer (IsO) are two major secondary organizers of vertebrate brain development. These organizers are located at the interface of the expression domains of key patterning genes (Fezf-Irx and Otx-Gbx, respectively). To gain insights into the evolutionary origin of the ZLI, we studied Fezf in bilaterians. Results: In this paper, we identified a conserved sequence motif (Fezf box) in all bilaterians. We report the expression pattern of Fezf in amphioxus and Drosophila and compare it with those of Gbx, Otx and Irx. We found that the relative expression patterns of these genes in vertebrates are fully conserved in amphioxus and flies, indicating that the genetic subdivisions defining the location of both secondary organizers in early vertebrate brain development were probably present in the last common ancestor of extant bilaterians. However, in contrast to vertebrates, we found that Irx-defective flies do not show an affected Fezf expression pattern. Conclusions: The absence of expression of the corresponding morphogens from cells at these conserved genetic boundaries in invertebrates suggests that the organizing properties might have evolved specifically in the vertebrate lineage by the recruitment of key morphogens to these conserved genetic locations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Nolz1 is a zinc finger transcription factor whose expression is enriched in the lateral ganglionic eminence (LGE), although its function is still unknown. Results: Here we analyze the role of Nolz1 during LGE development. We show that Nolz1 expression is high in proliferating neural progenitor cells (NPCs) of the LGE subventricular zone. In addition, low levels of Nolz1 are detected in the mantle zone, as well as in the adult striatum. Similarly, Nolz1 is highly expressed in proliferating LGE-derived NPC cultures, but its levels rapidly decrease upon cell differentiation, pointing to a role of Nolz1 in the control of NPC proliferation and/or differentiation. In agreement with this hypothesis, we find that Nolz1 over-expression promotes cell cycle exit of NPCs in neurosphere cultures and negatively regulates proliferation in telencephalic organotypic cultures. Within LGE primary cultures, Nolz1 over-expression promotes the acquisition of a neuronal phenotype, since it increases the number of β-III tubulin (Tuj1)- and microtubule-associated protein (MAP)2-positive neurons, and inhibits astrocyte generation and/or differentiation. Retinoic acid (RA) is one of the most important morphogens involved in striatal neurogenesis, and regulates Nolz1 expression in different systems. Here we show that Nolz1 also responds to this morphogen in E12.5 LGE-derived cell cultures. However, Nolz1 expression is not regulated by RA in E14.5 LGE-derived cell cultures, nor is it affected during LGE development in mouse models that present decreased RA levels. Interestingly, we find that Gsx2, which is necessary for normal RA signaling during LGE development, is also required for Nolz1 expression, which is lost in Gsx2 knockout mice. These findings suggest that Nolz1 might act downstream of Gsx2 to regulate RA-induced neurogenesis. Keeping with this hypothesis, we show that Nolz1 induces the selective expression of the RA receptor (RAR)β without altering RARα or RARγ. In addition, Nozl1 over-expression increases RA signaling since it stimulates the RA response element. This RA signaling is essential for Nolz1-induced neurogenesis, which is impaired in a RA-free environment or in the presence of a RAR inverse agonist. It has been proposed that Drosophila Gsx2 and Nolz1 homologues could cooperate with the transcriptional co-repressors Groucho-TLE to regulate cell proliferation. In agreement with this view, we show that Nolz1 could act in collaboration with TLE-4, as they are expressed at the same time in NPC cultures and during mouse development. Conclusions: Nolz1 promotes RA signaling in the LGE, contributing to the striatal neurogenesis during development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The zona limitans intrathalamica (ZLI) and the isthmus organizer (IsO) are two major secondary organizers of vertebrate brain development. These organizers are located at the interface of the expression domains of key patterning genes (Fezf-Irx and Otx-Gbx, respectively). To gain insights into the evolutionary origin of the ZLI, we studied Fezf in bilaterians. Results: In this paper, we identified a conserved sequence motif (Fezf box) in all bilaterians. We report the expression pattern of Fezf in amphioxus and Drosophila and compare it with those of Gbx, Otx and Irx. We found that the relative expression patterns of these genes in vertebrates are fully conserved in amphioxus and flies, indicating that the genetic subdivisions defining the location of both secondary organizers in early vertebrate brain development were probably present in the last common ancestor of extant bilaterians. However, in contrast to vertebrates, we found that Irx-defective flies do not show an affected Fezf expression pattern. Conclusions: The absence of expression of the corresponding morphogens from cells at these conserved genetic boundaries in invertebrates suggests that the organizing properties might have evolved specifically in the vertebrate lineage by the recruitment of key morphogens to these conserved genetic locations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The identification and characterization of long noncoding RNA in a variety of tissues represent major achievements that contribute to our understanding of the molecular mechanisms controlling gene expression. In particular, long noncoding RNA play crucial roles in the epigenetic regulation of the adaptive response to environmental cues via their capacity to target chromatin modifiers to specific locus. In addition, these transcripts have been implicated in controlling splicing, translation and degradation of messenger RNA. Long noncoding RNA have also been shown to act as decoy molecules for microRNA. In the heart, a few long noncoding RNA have been demonstrated to regulate cardiac commitment and differentiation during development. Furthermore, recent findings suggest their involvement as regulators of the pathophysiological response to injury in the adult heart. Their high cellular specificity makes them attractive target molecules for innovative therapies and ideal biomarkers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural microtubule associated proteins (MAPs) stabilize microtubules, a property that was thought to be essential for development, maintenance and function of neuronal circuits. However, deletion of the structural MAPs in mice does not lead to major neurodevelopment defects. Here we demonstrate a role for MAP6 in brain wiring that is independent of microtubule binding. We find that MAP6 deletion disrupts brain connectivity and is associated with a lack of post-commissural fornix fibres. MAP6 contributes to fornix development by regulating axonal elongation induced by Semaphorin 3E. We show that MAP6 acts downstream of receptor activation through a mechanism that requires a proline-rich domain distinct from its microtubule-stabilizing domains. We also show that MAP6 directly binds to SH3 domain proteins known to be involved in neurite extension and semaphorin function. We conclude that MAP6 is critical to interface guidance molecules with intracellular signalling effectors during the development of cerebral axon tracts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Snail zinc-finger transcription factors trigger epithelial-mesenchymal transitions (EMTs), endowing epithelial cells with migratory and invasive properties during both embryonic development and tumor progression. During EMT, Snail provokes the loss of epithelial markers, as well as changes in cell shape and the expression of mesenchymal markers. Here, we show that in addition to inducing dramatic phenotypic alterations, Snail attenuates the cell cycle and confers resistance to cell death induced by the withdrawal of survival factors and by pro-apoptotic signals. Hence, Snail favors changes in cell shape versus cell division, indicating that with respect to oncogenesis, although a deregulation/increase in proliferation is crucial for tumor formation and growth, this may not be so for tumor malignization. Finally, the resistance to cell death conferred by Snail provides a selective advantage to embryonic cells to migrate and colonize distant territories, and to malignant cells to separate from the primary tumor, invade, and form metastasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Notch signaling is involved in cell fate choices during the embryonic development of Metazoa. Commonly, Notch signaling arises from the binding of the Notch receptor to its ligands in adjacent cells driving cell-to-cell communication. Yet, cell-autonomous control of Notch signaling through both ligand-dependent and ligand-independent mechanisms is known to occur as well. Examples include Notch signaling arising in the absence of ligand binding, and cis-inhibition of Notch signaling by titration of the Notch receptor upon binding to its ligands within a single cell. Increasing experimental evidences support that the binding of the Notch receptor with its ligands within a cell (cis-interactions) can also trigger a cell-autonomous Notch signal (cis-signaling), whose potential effects on cell fate decisions and patterning remain poorly understood. To address this question, herein we mathematically and computationally investigate the cell states arising from the combination of cis-signaling with additional Notch signaling sources, which are either cell-autonomous or involve cell-to-cell communication. Our study shows that cis-signaling can switch from driving cis-activation to effectively perform cis-inhibition and identifies under which conditions this switch occurs. This switch relies on the competition between Notch signaling sources, which share the same receptor but differ in their signaling efficiency. We propose that the role of cis-interactions and their signaling on fine-grained patterning and cell fate decisions is dependent on whether they drive cis-inhibition or cis-activation, which could be controlled during development. Specifically, cis-inhibition and not cis-activation facilitates patterning and enriches it by modulating the ratio of cells in the high-ligand expression state, by enabling additional periodic patterns like stripes and by allowing localized patterning highly sensitive to the precursor state and cell-autonomous bistability. Our study exemplifies the complexity of regulations when multiple signalng sources share the same receptor and provides the tools for their characterization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study is aimed at describing scrotal collections observed at ultrasonography and magnetic resonance imaging. The authors describe the main features of hydrocele, hematocele and pyocele, as well as the most common causes, clinical manifestations and associated diseases, with a brief review of the embryology and anatomy of the scrotum. Collections are frequently found in the evaluation of the scrotum, which is often performed on an emergency basis, and in most cases can be differentiated by means of imaging studies. With the consolidation of magnetic resonance imaging as the method of choice complementary with ultrasonography, the authors also describe magnetic resonance imaging findings of scrotal collections as well as the situations where such method is indicated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A síndrome dos ovários policísticos (SOP) é a principal endocrinopatia ginecológica na idade reprodutiva, com incidência de 6 a 10% das mulheres no menacme. A resistência insulínica e a hiperinsulinemia compensatória permanecem como os elementos mais importantes na etiopatogenia da SOP. Esta revisão teve como objetivo discutir as controvérsias no tratamento de mulheres com SOP nos diferentes contextos da infertilidade feminina e gestação, à luz das evidências atuais, com ênfase no consenso de 2008 proposto pelas sociedades européia (European Society of Human Reproduction and Embryology, ESHRE) e americana (American Society for Reproductive Medicine, ASRM) de reprodução.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ovule ontogenesis and the megasporogenesis events were studied under bright field, fluorescence and scanning electron microscopy. The primordium is 3-zonate and gives rise to a hemianatropous, bitegmic and crassinucellate ovule. The archesporium may consist of one or more archesporial cells, but only one undergoes meiosis, forming a linear tetrad. Normally, only a single megaspore is functional in the chalazal position, but occasionally two functional chalazal megaspores arise. The present study provides additional information on embryological characters in the Adesmieae tribe and discusses their taxonomic significance to the Leguminosae family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The female gametophyte has a monosporic origin and a Polygonum type development. The female gametophyte growth consumes a large part of the neighboring nucellar cells and, in the micropylar region, part of the nucellar epidermis and internal integument. The mature gametophyte is composed of only four cells due to the ephemeral characteristic of the antipodals. The synergids are pear-shaped cells with the formation of filiform apparatus. Their nuclei lie in the micropylar region and large vacuoles in the chalazal region, while the egg cell presents an opposite polarization. The central cell accumulates starch grains and the two polar nuclei approach the egg. Occasional development of two gametophytes was recorded. The closest to the micropyle develops fully, while the chalazal one remained in the tetranucleated stage. The embryological characters of A. latifolia are compared with those of other taxa within the Leguminosae, and the reproductive importance of multiple gametophyte formation for this species was discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new concept termed "radioautographology" is advocated. This term was synthesized from "radioautography" and "ology", expressing a new science derived from radioautography. The concept of radioautographology (RAGology) is that of a science whose objective is to localize radioactive substances in the biological structure of objects and to analyze and study the significance of these substances in the biological structure. On the other hand, the old term radioautography (RAG) is the technique used to demonstrate the pattern of localization of various radiolabeled compounds in specimens. The specimens used in biology and medicine are cells and tissues. They are fixed, sectioned and placed in contact with the radioautographic emulsions, which are exposed and developed to produce metallic silver grains. Such specimens are designated as radioautographs and the patterns of pictures made of silver grains are named radioautograms. The technicians who produce radioautographs are named radioautographers, while those who study RAGology are scientists and should be called radioautographologists. The science of RAGology can be divided into two parts, general RAGology and special RAGology, as most natural sciences usually can. General RAGology is the technology of RAG which consists of three fields of science, i.e., physics concerning radioactivity, histochemistry for the treatment of cells and tissues, and photochemistry dealing with the photographic emulsions. Special RAGology, on the other hand, consists of applications of general RAGology. The applications can be classified into several scientific fields, i.e., cellular and molecular biology, anatomy, histology, embryology, pathology and pharmacology. Studies carried out in our laboratory are summarized and reviewed. All the results obtained from such applications should be systematized as a new field of science in the future.