921 resultados para ELECTROLUMINESCENT POLYMERS
Resumo:
The synthesis and characterization of two new polyphenylphenyl compounds is reported. One compound (CPP) acts as a blue light-emitting material, but contains strong electron-accepting groups that form exciplexes with electron-donating arylamines that are widely used as hole-transporting materials. Inserting a layer of the other compound into the organic light-emitting diodes (see figure) suppresses the formation of exciplexes, and gives high-efficiency blue-light emission from the CPP layer.
Resumo:
Reversible addition-fragmentation chain transfer (RAFT) mediated radical polymerizations of allyl methacrylate and undecenyl methacrylate, compounds containing two types of vinyl groups with different reactivities, were investigated to provide hyperbranched polymers. The RAFT agent benzyl dithiobenzoate was demonstrated to be an appropriate chain-transfer agent to inhibit crosslinking and obtain polymers with moderate-to-high conversions. The polymerization of allyl methacrylate led to a polymer without branches but with five- or six-membered rings. However, poly(undecenyl methacrylate) showed an indication of branching rather than intramolecular cycles. The hyperbranched structure of poly(undecenyl methacrylate) was confirmed by a combination of H-1, C-13, H-1-H-1 correlation spectroscopy, and distortionless enhancement by polarization transfer 135 NMR spectra. The branching topology of the polymers was controlled by the variation of the reaction temperature, chain-transfer-agent concentration, and monomer conversion. The significantly lower inherent viscosities of the resulting polymers, compared with those of linear analogues, demonstrated their compact structure,
Resumo:
Reactions of Zn(BF4)(2) and pyridine-2,4-dicarboxylic acid (2,4-pydcH(2)) in the presence of 1,2-bis( 4-pyridyl) ethylene or 1,3-bis(4-pyridyl) propane under hydro(solvo) thermal conditions yielded two polymorphic metal-organic coordination polymers formulated as Zn-2(OH)(2)(2,4-pydc) (1 and 2). Polymorph 1 features a two-dimensional (2-D) layer-like structure that is constructed by 2,4-pydc ligands bridging between the Zn-OH-Zn double-chain units. Each single Zn-OH-Zn chain is composed of mu(2)-OH groups connecting trigonal bipyramidal and tetrahedral Zn centers. Polymorph 2 is a 3-D coordination polymer containing 2-D Zn-OH-Zn sheets that consist of mu(2)- and mu(3)-OH groups and trigonal bipyramidal Zn centers. The sheets are pillared by 2,4-pydc ligands to form an acentric structural architecture. 1 and 2 are rare examples that the two polymorphs exhibit a centrosymmetric 2-D coordination network and an acentric 3-D coordination network, respectively. The different structures lead to differences in photoluminescent properties and thermal stabilities for 1 and 2.
Resumo:
Two orange phosphorescent iridium complex monomers, 9-hexyl-9-(iridium (III)bis(2-(4'-fluorophenyl)-4-phenylquinoline-N, C-2')(tetradecanedionate-11,13))-2,7-dibromofluorene (Br-PIr) and 9-hexyl-9-(iridium(III)bis(2-(4'-fluorophenyl)-4-methylquinoline-N, C-2')(tetradecanedionate-11,13))-2,7-dibromofluorene (Br-MIr), were successfully synthesized. The Suzuki polycondensation of 2,7-bis(trimethylene boronate)-9,9-dioctylfluorene with 2,7-dibromo-9,9-dioetylfluorene and Br-Plr or Br-MIr afforded two series of copolymers, PIrPFs and MIrPFs, in good yields, in which the concentrations of the phosphorescent moieties were kept small (0.5-3 mol % feed ratio) to realize incomplete energy transfer. The photoluminescence (PL) of the copolymers showed blue- and orange-emission peaks. A white-light-emitting diode with a configuration of indium tin oxide/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/PIr05PF (0.5 mol % feed ratio of Br-PIr)/Ca/Al exhibited a luminous efficiency of 4.49 cd/A and a power efficiency of 2.35 lm/W at 6.0 V with Commission Internationale de L'Eclairage (CIE) coordinates of (0.46, 0.33). The CIE coordinates were improved to (0.34, 0.33) when copolymer MIr10PF (1.0 mol % feed ratio of Br-MIr) was employed as the white-emissive layer. The strong orange emission in the electroluminescence spectra in comparison with PL for these kinds of polymers was attributed to the additional contribution of charge trapping in the phosphorescent dopants.
Resumo:
A family of supramolecular polymers was prepared via Cd2+-directed self-assembly polymerization of his (2,2':6',2 ''-terpyridine)-based ligand monomers, using oligofluorenes and triphenylamine as bridges under mild conditions. The polymers were fully characterized using thermogravimetric analysis, inherent viscosity, electrochemical measurements, UV-visible spectroscopy, photoluminescence (PL) and electroluminescence (EL). Polymers with oligofluorenes as spacers exhibited blue emission (434-442 nm) in dimethyl acetamide (DMAc) solution, while polymers with triphenylamine as spacer presented an emission peak at 494 nn in DMAc solution. Complexation polymerization of bis(2,2':6',2 ''-terpyridine)-based ligand monomers with cadmium(II) improved fluorescence quantum yields dramatically, and the film PL quantum yields of these polymers were about 0.38-0.54. Single-layer light-emitting diodes were fabricated with the configuration indium tin oxide (ITO)/polymer/Ca/Al; the EL showed green emission and the onset voltages of the devices were 8-11 V.
Resumo:
The interfacial tension sigma between two polyisobutylenes (PIB) of dissimilar polydispersity and two polydisperse samples of poly(dimethylsiloxane) (PDMS) was measured as a function of time by means of a pendent drop apparatus at different temperatures ranging from 30 to 110 degreesC. In addition to three of the four possible binary blends, the time evolution of sigma was also determined for one ternary system, where the PIB phase contained 0.03 wt % of a diblock copolymer poly(isobutylene-b-dimethylsiloxane). The pronounced decrease of sigma with advancing time, observed in all cases, is attributed to the migration of the interfacially active lower molecular weight components of the homopolymers and of the compatibilizer into the interphase. Several days are normally required until a becomes constant. These time independent values are not considered as equilibrium data, but accredited to stationary states. A kinetic model is established for sigma(t), which enables a detailed investigation of the rates of transport of the different migrating species of average molar mass of M.
Resumo:
The synthesis of a new type of polymers with main chain chirality based on BINOL skeleton is described. Titanium-BINOLate catalysts are easily generated from these polymers and applied to the asymmetric reaction of Et2Zn with benzaldehyde. The products are obtained in good yields with moderate enantioselectivities.
Resumo:
The amplified spontaneous emission and gain characteristics of various fluorescent dyes, 2-(1,1-dimethylethyl)-6(2-(2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H-benzo[ij] quinolizin-9-1)ethenyl)-4H-pyran-4-ylidene) propanedinitrile (DCJTB) and 4-dicyanomethylene-2-methyl-6-(p-dimethyl-aminostyryl)-4H-pyran (DCM), doped in polystyrene (PS) matrices were studied and compared. It was found that DCJTB has a larger net gain, 40.72 cm(-1), a lower loss, 2.49 cm(-1), and a lower threshold, 0.16 (mJ/pulse)/cm(2), than DCM, which has a net gain of 11.95 cm(-1), a loss of 9.25 cm(-1), and a threshold of 4(mJ/pulse)/cm(2). The improvement of performance in DCJTB PS films is attributed to the larger free volume of DCJTB caused by the introduction of steric spacer groups into the DCJTB molecule.
Resumo:
The multi-layered electroluminescent device consisting of Eu(TTA)(3)(2,2'-bipyridine mono N-oxide) (TTA = 2-thenoyltrifluoroacetonate) as the red dopant exhibited an impressive current and power efficiency at a brightness of 100 cd m(-2) and voltage-independent spectral stability.
Resumo:
It was theoretically pointed out that the product of the yield stress and yield strain of matrix polymer that determined the brittle-ductile transition (BDT) of particle toughened polymers. For given particle and test condition, the higher the product of the yield stress and the yield strain of the matrix polymer, the smaller the critical interparticle distance (IDc) of the blends was. This was why the IDc (0.15 mum) of the polypropylene (PP)/rubber blends was smaller than that (0.30 mum) of the nylon 66/rubber blends, and the IDc of the nylon 66/rubber blends was smaller than that (0.60 mum) of the high density polyethylene (HDPE)/rubber blends.
Resumo:
Cyclic oligomers of phenolphthalein polyarylene ether sulfone(ketone) were prepared through cyclo-depolymerisation of corresponding polymers using CsF as the catalyst in dipolar aprotic solvent DMAc and DMF, and a family of macrocycles containing from dimer up to at least heptamer were confirmed. by GPC, HPLC and MALDI-TOF-MS. The yields of cyclics get as high as 86.3% and 87.9% respectively.
Resumo:
The reactions of freshly prepared Cu(OH)(2).xH(2)O and Cu(OH)(2-2y)(CO3)(y).zH(2)O precipitates with imidazole and adipic acid in CH3OH/H2O at pH = 5.4 yielded CU(C3N2H4)(2)(HL)(2) 1 and CU(C3N2H4)(2)L 2, respectively. Complex 1 consists of ribbon-like polymeric chains (1)(infinity)[CU(C3N2H4)(2)(HL)(4/2)], in which the octahedrally coordinated Cu atoms are doubly bridged by bis-monodentate hydrogen adipato ligands. The interchain N-H...O hydrogen bonding interactions are responsible for supramolecular assembly of the polymeric chains into open 3D frameworks and two-fold interpenetration of the resulting open frameworks completes the crystal structure of 1. Within complex 2, the Cu atoms are penta-coordinated to form CuN2O3 square pyramids and condensed into CU2N4O4 dimers, which are doubly bridged by twisted bis-monodentate adipato ligands into polymeric chains (1)(infinity)([CU(C3N2H4)(2)](2)L-4/2) with 4- and 18-membered rings progressing alternatively. The polymeric chains are assembled due to interchain N-H...O hydrogen bonding interactions. The thermal and magnetic behaviors of 1 and 2 is discussed.
Resumo:
Triphenyl pyrazoline derivatives (TPPs) bearing electron withdrawing and pushing substitutents were synthesized. Their photoluminescence (PL) properties in the solution and doped in poly(N-vinylcarbazole) (PVK) thin films were investigated. When TPPs were doped into PVK films the photoluminescence intensity was enhanced with increasing TPPs concentration. It indicated that the energy transfer from PVK to TPPs has happened. Double and three-layer electroluminescence (EL) devices based on PVK doped with TPPs as an active layer were fabricated and investigated and the electroluminescent mechanism was followed by energy transfer from PVK to TPPs. The pyrazoline derivative with both electron withdrawing and pushing substituents was the optimistic candidate for electroluminescent emitter due to higher transfer efficiency from electric energy to light energy as well as larger luminance.
Resumo:
Layer-by-layer electrodeposition of redox polymer/enzyme composition films on screen-printed carbon electrodes for fabrication of reagentless enzyme biosensors has been proposed and the resulting films were found to be very stable and rigid.
Resumo:
A conjugated poly(p-CN-phenylenevinylene) (PCNPV) containing both electron-donating triphenylamine units and electron-withdrawing cyano groups was prepared via Knoevenagel condensation in a good yield. Gel permeation chromatography suggested that the soluble polymer had a very high weight-average molecular weight of 309,000. A bright and saturated red emission was observed under UV excitation in solution and film. Cyclic voltammetry showed that the polymer presented quasi-reversible oxidation with a relatively low potential because of the triphenylamine unit. A single-layer indium tin oxide/PCNPV/Mg-Ag device emitted a bright red light (633 nm).