979 resultados para EER SPECTRA
Resumo:
We have observed an extremely narrow absorption spectrum due to bound-to-continuum transition in GaAs/AlxGa1-xAs multiple quantum wells (MQWs). Its linewidth is only about one tenth of the values reported previously. Our calculation indicates that the broadening of the excited state in the continuum has little contribution to the absorption linewidth. We have grown a sample whose MQW region contains two kinds of wells with a minor thickness inhomogeneity. Its resultant absorption linewidth is six times as large as that of homogeneous well sample, which is in good agreement with our theoretical analysis. Thus we can suggest that the wider absorption spectra reported by many authors may be due to the well width inhomogeneity. (C) 1998 American Institute of Physics. [S0003-6951(98)03430-5]
Resumo:
The influence of interdot electronic coupling on photoluminescence (PL) spectra of self-assembled InAs/GaAs quantum dots (QDs) has been systematically investigated combining with the measurement of transmission electron microscopy. The experimentally observed fast red-shift of PL energy and an anomalous reduction of the linewidth with increasing temperature indicate that the QD ensemble can be regarded as a coupled system. The study of multilayer vertically coupled QD structures shows that a red-shift of PL peak energy and a reduction of PL linewidth are expected as the number of QD layers is increased. On the other hand, two layer QDs with different sizes have been grown according to the mechanism of a vertically correlated arrangement. However, only one PL peak related to the large QD ensemble has been observed due to the strong coupling in InAs pairs. A new possible mechanism to reduce the PL linewidth of QD ensemble is also discussed.
Resumo:
Samples have been prepared at different temperatures by loading It molecules into the cages of zeolite 5A, and the measurements of the absorption spectra have been carried out for the prepared samples. It is shown that 12 molecular clusters are formed in the cages of zeolite 5A, and it is also found that molecular clusters which are bonded with intermolecular forces have an important feature, namely, the intermolecular distance in molecular clusters can be changed on different preparing conditions and the blue shift of absorption edges can not be as the criterion of forming molecular clusters.
Resumo:
In this paper, we presents the characterization technique of high-speed optoelectronics devices based electrical and optical spectra, which is as important access to the devices performance as the prevalent vector network analyzer (VNA) sweeping method. The measurement of additional modulation of laser and frequency response of photodetector from electrical spectra, and the estimation of the modulation indexes and the chirp parameters of directly modulated lasers based on optical spectra analysis, are given as examples.
Resumo:
Two types of InAs self-assembled Quantum dots (QDs) were prepared by Molecular beam epitaxy. Atomic force microscopy (AFM) measurements showed that, compared to QDs grown on GaAs substrate, QDs grown on InGaAs layer has a significantly enhanced density. The short spacing (several nanometer) among QDs stimulates strong coupling and leads to a large red-shift of the 1.3 mu m photoluminescence (PL) peak. We study systematically the dependence of PL lifetime on the QDs size, density and temperature (1). We found that, below 50 K, the PL lifetime is insensitive to temperature, which is interpreted from the localization effects. As T increases, the PL lifetime increases, which can be explained from the competition between the carrier redistribution and thermal emission at higher temperature. The increase of carriers in QDs migrated from barriers and wetting layer (WL), and the redistribution of carriers among QDs enhance the PL lifetime as T increases. The thermal emission and non-radiative recombination have effects to reduce the PL lifetime at higher T. As a result, the radiative recombination lifetime is determined by the wave function overlapping of electrons and holes in QDs, and QDs with different densities have different PL lifetime dependence on the QDs size. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The existing methods for the discrimination of varieties of commodity corn seed are unable to process batch data and speed up identification, and very time consuming and costly. The present paper developed a new approach to the fast discrimination of varieties of commodity corn by means of near infrared spectral data. Firstly, the experiment obtained spectral data of 37 varieties of commodity corn seed with the Fourier transform near infrared spectrometer in the wavenurnber range from 4 000 to 12 000 cm (1). Secondly, the original data were pretreated using statistics method of normalization in order to eliminate noise and improve the efficiency of models. Thirdly, a new way based on sample standard deviation was used to select the characteristic spectral regions, and it can search very different wavenumbers among all wavenumbers and reduce the amount of data in part. Fourthly, principal component analysis (PCA) was used to compress spectral data into several variables, and the cumulate reliabilities of the first ten components were more than 99.98%. Finally, according to the first ten components, recognition models were established based on BPR. For every 25 samples in each variety, 15 samples were randomly selected as the training set. The remaining 10 samples of the same variety were used as the first testing set, and all the 900 samples of the other varieties were used as the second testing set. Calculation results showed that the average correctness recognition rate of the 37 varieties of corn seed was 94.3%. Testing results indicate that the discrimination method had higher precision than the discrimination of various kinds of commodity corn seed. In short, it is feasible to discriminate various varieties of commodity corn seed based on near infrared spectroscopy and BPR.
Resumo:
BR-D96N is a kind of genetically site-specific mutants of bacteriorhodopsin (BR) with obvious photochromic effect. Compared to the wild type BR, the lifetime of M state of BR-D96N is prolonged to several minutes so that the photochromic kinetics and the intermediates formation can be studied by the conventional spectra analysis. In the experiment, the absorption spectra of the sample at different time after light illumination are measured with spectrophotometer. By fitting and analyzing the variation of the spectra, we suppose that there are three main states in the, photochromic process, i.e., B state (light-adapted state), M state and D state (dark-adapted state). The absorption spectra of the B state, M state and D state are extracted from the experimental data based on this three-state model and the spectra at various time are fitted with the least-square method. So, the variations of population percentages of the M state, B state and D state are obtained and the M state and B state lifetimes are estimated. In another way, from the measurement of the absorption dynamics at 407 and 568 nm, the M state and B state lifetimes are also obtained by two exponential data fitting, which give coincident results with those of the spectra analysis. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
BR-D96N is a kind of genetically site-specific mutant of bacteriorhodopsin (BR) with obvious photochromic effect. Compared to the wild type BR, the lifetime of M state of BR-D96N is prolonged to several minutes so that the photochromic kinetics and the intermediates formation can be studied by the conventional spectra analysis. In the experiment, the absorption spectra of the sample at different time after light illumination are measured with spectrophotometer. By fitting and analyzing the variation of the spectra, we suppose there-are three main states in the photochromic process, i.e. B state (light-adapted state), M state and D state (dark-adapted state). The absorption spectra of the B state, M state and D state are extracted from the experimental data based on this three-state model and the spectra at various time are fitted With the least square method. So, the variations of population percentages of the M state, B state and D state are obtained and the M state and B state lifetimes are estimated. In another,way, from measuring the absorption dynamics at 407 nm and 568 nm, the M state and B state lifetimes are also obtained by two exponential data fitting, which give coincident results with those of the spectra analysis.
Resumo:
The Raman spectra of the II-VI wide band-gap compound ZnSe-ZnTe semiconductor strained-layer superlattices have been studied. The relations between the Raman shifts of the longitudinal optical phonon modes and the superlattice-structure parameters have been determined. When the layer thickness exceeds 40 angstrom, the change of the LO phonon-mode frequency shifts with the layer thickness is minimal, whereas when the layer thickness is smaller than 40 angstrom, great shifts have been observed. We estimate that the critical thickness of ZnSe-ZnTe SLS is about 40 angstrom. We have also found that the shifts induced by strain are much larger than the red shifts due to confinement.
Resumo:
A high energy shift of the band-band recombination has been observed in the photoluminescence (PL) spectra of the strained InP epilayer on GaAs by metalorganic chemical vapor deposit. The strain determined by PL peak is in good agreement with calculated thermal strain. The surface photovoltalic spectra gives the information about energy gap, lattice mismatching, and composition of heteroepilayers, diffusion length, surface, and interface recombination velocity of minority carriers of heteroepitaxy layers.
Resumo:
We present studies of alloy composition and layer thickness dependences of excitonic linewidths in InGaAs/GaAs strained-layer quantum wells grown by MBE, using both photoluminescence and optical absorption. It is observed that linewidths of exciton spectra increase with indium content and well size. Using the virtual crystal approximation, the experimental data are analyzed. The results obtained show that the alloy disorder is the dominant mechanism for line broadening at low temperature. In addition, it is found that the absorption spectra related to light hole transitions have varied from a peak to a step-like structure as temperature increases. This behavior can be understood by the indirect space transitions of light holes.
Resumo:
A high-energy shift of the band-band recombination has been observed in photoluminescence spectra of the strained InP layer grown on GaAs substrate. The InP layer is under biaxial compressive strain at temperatures below the growth temperature, because the thermal expansion coefficient of InP is smaller than that of GaAs. The strain value determined by the energy shift of the band-edge peak is in good agreement with the calculated thermal strain. A band to carbon acceptor recombination is also identified.