994 resultados para Dynamic Traffic Assignment
Resumo:
In order to sustain their competitive advantage in the current increasingly globalized and turbulent context, more and more firms are competing globally in alliances and networks that oblige them to adopt new managerial paradigms and tools. However, their strategic analyses rarely take into account the strategic implications of these alliances and networks, considering their global relational characteristics, admittedly because of a lack of adequate tools to do so. This paper contributes to research that seeks to fill this gap by proposing the Global Strategic Network Analysis - SNA - framework. Its purpose is to help firms that compete globally in alliances and networks to carry out their strategic assessments and decision-making with a view to ensuring dynamic strategic fit from both a global and relational perspective.
Resumo:
RESUMO: Considerando a identidade como um processo dinâmico de interacção social, afastando-nos da ideia de identidades pré-estabelecidas, ancoradas numa visão essencialista e, aproximando-nos de uma identidade profissional que se constrói através de sucessivas interacções, procurámos conhecer a identidade profissional do docente de enfermagem. Convictos de que o estudo da identidade pode oscilar entre um pólo individual e um estrutural, optámos pela dimensão biográfica como eixo estruturante deste trabalho. Efectuaram-se oito biografias a docentes integrados no conceito de perito com uma profissionalidade reflectida. Utilizámos ainda o focus group como método complementar. Constatámos que os actores deste estudo se sentem enfermeiros, embora a sua área de actuação seja a docência. Destacam a integração do ensino de enfermagem no ensino superior como determinante na mudança da sua representação social. Todos estes docentes se incluem nos grupos que apresentam um estatuto da identidade realizado ou outorgado. Das competências que devem estar presentes no docente de enfermagem, salientam-se a comunicação, actualização científica e relação, capazes de promover um ambiente que propicie as aprendizagens significativas, de internacionalização, de investigação, como um modelo de conduta a seguir, que participe na vida da organização e seja capaz de motivar o outro, mas sobretudo que seja um bom enfermeiro. ABSTRACT: Considering identity as a social dynamic integration process, departing from the concept of pre-established identities anchored in an essentialist vision, and approaching a professional identity built trough successive interaction, we aimed to know the professional identity of the nursing teacher. Believing that the identity study may oscillate between an individual and a structural pole, we have chosen the biographic dimension as the structural axis for this assignment. Eight biographies from teachers integrated in the expert with a reflective professional identity have been made. We have also used the focus group as a complementary method. We have seen that the actors of this study feel themselves as nurses although their working area is teaching. They point out the higher teaching of Nursing as a determinant in the change of their social representation. All of these teachers are included in the groups that present an identity status that has been fulfilled or attributed. From the skills that should be present in the nursing teacher, communication, scientific knowledge and relationship are indicated when these are able to provide significant learning, internationalization and research as a behaviour model to be followed regarding the life of the organization and that might incentive others, but above as a way to be a good nurse.
Resumo:
This paper presents a predictive optimal matrix converter controller for a flywheel energy storage system used as Dynamic Voltage Restorer (DVR). The flywheel energy storage device is based on a steel seamless tube mounted as a vertical axis flywheel to store kinetic energy. The motor/generator is a Permanent Magnet Synchronous Machine driven by the AC-AC Matrix Converter. The matrix control method uses a discrete-time model of the converter system to predict the expected values of the input and output currents for all the 27 possible vectors generated by the matrix converter. An optimal controller minimizes control errors using a weighted cost functional. The flywheel and control process was tested as a DVR to mitigate voltage sags and swells. Simulation results show that the DVR is able to compensate the critical load voltage without delays, voltage undershoots or overshoots, overcoming the input/output coupling of matrix converters.
Resumo:
Opposite enantiomers exhibit different NMR properties in the presence of an external common chiral element, and a chiral molecule exhibits different NMR properties in the presence of external enantiomeric chiral elements. Automatic prediction of such differences, and comparison with experimental values, leads to the assignment of the absolute configuration. Here two cases are reported, one using a dataset of 80 chiral secondary alcohols esterified with (R)-MTPA and the corresponding 1H NMR chemical shifts and the other with 94 13C NMR chemical shifts of chiral secondary alcohols in two enantiomeric chiral solvents. For the first application, counterpropagation neural networks were trained to predict the sign of the difference between chemical shifts of opposite stereoisomers. The neural networks were trained to process the chirality code of the alcohol as the input, and to give the NMR property as the output. In the second application, similar neural networks were employed, but the property to predict was the difference of chemical shifts in the two enantiomeric solvents. For independent test sets of 20 objects, 100% correct predictions were obtained in both applications concerning the sign of the chemical shifts differences. Additionally, with the second dataset, the difference of chemical shifts in the two enantiomeric solvents was quantitatively predicted, yielding r2 0.936 for the test set between the predicted and experimental values.
Resumo:
A mathematical model for the purpose of analysing the dynamic of the populations of infected hosts anf infected mosquitoes when the populations of mosquitoes are periodic in time is here presented. By the computation of a parameter lambda (the spectral radius of a certain monodromy matrix) one can state that either the infection peters out naturally) (lambda <= 1) or if lambda > 1 the infection becomes endemic. The model generalizes previous models for malaria by considering the case of periodic coefficients; it is also a variation of that for gonorrhea. The main motivation for the consideration of this present model was the recent studies on mosquitoes at an experimental rice irrigation system, in the South-Eastern region of Brazil.
Resumo:
In this study, the results of chemical concentrations inside and outside of a Lisbon (Portugal) traffic tunnel were compared, during one week. They were obtained by Instrumental Neutron Activation Analysis (INAA). The tunnel values largely exceed the Air Ambient legislated values and the Pearson Correlations Coefficients point out to soil re-suspension/dispersed road dust (As, Ce, Eu, Hf, Fe, Mo, Sc, Zn), traffic-markers (Ba, Cr), tire wear (Cr, Zn), break wear (Fe, Zn, Ba, Cu, Sb), exhaust and motor oil (Zn) and sea-spray (Br, Na). On all days these elements inside the tunnel were more enriched than outside; significant statistical differences were found for Co (p=0.005), Br (p=0.008), Zn (p=0.01) and Sb (p=0.005), while enrichment factors of As and Sc are statistically identical. The highest values were found for As, Br, Zn and Sb, for both inside and outside the tunnel.
Resumo:
Reinforcement Learning is an area of Machine Learning that deals with how an agent should take actions in an environment such as to maximize the notion of accumulated reward. This type of learning is inspired by the way humans learn and has led to the creation of various algorithms for reinforcement learning. These algorithms focus on the way in which an agent’s behaviour can be improved, assuming independence as to their surroundings. The current work studies the application of reinforcement learning methods to solve the inverted pendulum problem. The importance of the variability of the environment (factors that are external to the agent) on the execution of reinforcement learning agents is studied by using a model that seeks to obtain equilibrium (stability) through dynamism – a Cart-Pole system or inverted pendulum. We sought to improve the behaviour of the autonomous agents by changing the information passed to them, while maintaining the agent’s internal parameters constant (learning rate, discount factors, decay rate, etc.), instead of the classical approach of tuning the agent’s internal parameters. The influence of changes on the state set and the action set on an agent’s capability to solve the Cart-pole problem was studied. We have studied typical behaviour of reinforcement learning agents applied to the classic BOXES model and a new form of characterizing the environment was proposed using the notion of convergence towards a reference value. We demonstrate the gain in performance of this new method applied to a Q-Learning agent.
Resumo:
O objectivo deste trabalho passa pelo desenvolvimento de uma ferramenta de simulação dinâmica de recursos rádio em LTE no sentido descendente, com recurso à Framework OMNeT++. A ferramenta desenvolvida permite realizar o planeamento das estações base, simulação e análise de resultados. São descritos os principais aspectos da tecnologia de acesso rádio, designadamente a arquitectura da rede, a codificação, definição dos recursos rádio, os ritmos de transmissão suportados ao nível de canal e o mecanismo de controlo de admissão. Foi definido o cenário de utilização de recursos rádio que inclui a definição de modelos de tráfego e de serviços orientados a pacotes e circuitos. Foi ainda considerado um cenário de referência para a verificação e validação do modelo de simulação. A simulação efectua-se ao nível de sistema, suportada por um modelo dinâmico, estocástico e orientado por eventos discretos de modo a contemplar os diferentes mecanismos característicos da tecnologia OFDMA. Os resultados obtidos permitem a análise de desempenho dos serviços, estações base e sistema ao nível do throughput médio da rede, throughput médio por eNodeB e throughput médio por móvel para além de permitir analisar o contributo de outros parâmetros designadamente, largura de banda, raio de cobertura, perfil dos serviços, esquema de modulação, entre outros. Dos resultados obtidos foi possível verificar que, considerando um cenário com estações base com raio de cobertura de 100 m obteve-se um throughput ao nível do utilizador final igual a 4.69494 Mbps, ou seja, 7 vezes superior quando comparado a estações base com raios de cobertura de 200m.
Resumo:
In recent works large area hydrogenated amorphous silicon p-i-n structures with low conductivity doped layers were proposed as single element image sensors. The working principle of this type of sensor is based on the modulation, by the local illumination conditions, of the photocurrent generated by a light beam scanning the active area of the device. In order to evaluate the sensor capabilities is necessary to perform a response time characterization. This work focuses on the transient response of such sensor and on the influence of the carbon contents of the doped layers. In order to evaluate the response time a set of devices with different percentage of carbon incorporation in the doped layers is analyzed by measuring the scanner-induced photocurrent under different bias conditions.
Resumo:
Recent literature has proved that many classical pricing models (Black and Scholes, Heston, etc.) and risk measures (V aR, CV aR, etc.) may lead to “pathological meaningless situations”, since traders can build sequences of portfolios whose risk leveltends to −infinity and whose expected return tends to +infinity, i.e., (risk = −infinity, return = +infinity). Such a sequence of strategies may be called “good deal”. This paper focuses on the risk measures V aR and CV aR and analyzes this caveat in a discrete time complete pricing model. Under quite general conditions the explicit expression of a good deal is given, and its sensitivity with respect to some possible measurement errors is provided too. We point out that a critical property is the absence of short sales. In such a case we first construct a “shadow riskless asset” (SRA) without short sales and then the good deal is given by borrowing more and more money so as to invest in the SRA. It is also shown that the SRA is interested by itself, even if there are short selling restrictions.
Resumo:
O documento em anexo encontra-se na versão post-print (versão corrigida pelo editor).
Resumo:
This paper presents an artificial neural network applied to the forecasting of electricity market prices, with the special feature of being dynamic. The dynamism is verified at two different levels. The first level is characterized as a re-training of the network in every iteration, so that the artificial neural network can able to consider the most recent data at all times, and constantly adapt itself to the most recent happenings. The second level considers the adaptation of the neural network’s execution time depending on the circumstances of its use. The execution time adaptation is performed through the automatic adjustment of the amount of data considered for training the network. This is an advantageous and indispensable feature for this neural network’s integration in ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to the market negotiating players of MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).
Resumo:
Scheduling is a critical function that is present throughout many industries and applications. A great need exists for developing scheduling approaches that can be applied to a number of different scheduling problems with significant impact on performance of business organizations. A challenge is emerging in the design of scheduling support systems for manufacturing environments where dynamic adaptation and optimization become increasingly important. In this paper, we describe a Self-Optimizing Mechanism for Scheduling System through Nature Inspired Optimization Techniques (NIT).
Resumo:
This chapter addresses the resolution of dynamic scheduling by means of meta-heuristic and multi-agent systems. Scheduling is an important aspect of automation in manufacturing systems. Several contributions have been proposed, but the problem is far from being solved satisfactorily, especially if scheduling concerns real world applications. The proposed multi-agent scheduling system assumes the existence of several resource agents (which are decision-making entities based on meta-heuristics) distributed inside the manufacturing system that interact with other agents in order to obtain optimal or near-optimal global performances.
Resumo:
This chapter addresses the resolution of scheduling in manufacturing systems subject to perturbations. The planning of Manufacturing Systems involves frequently the resolution of a huge amount and variety of combinatorial optimisation problems with an important impact on the performance of manufacturing organisations. Examples of those problems are the sequencing and scheduling problems in manufacturing management, routing and transportation, layout design and timetabling problems.