944 resultados para Drop Tower Beijing
Resumo:
In the course of our 870 μm APEX/LABOCA follow-up of the Herschel Lensing Survey we have detected a source in AS1063 (RXC J2248.7-4431) that has no counterparts in any of the Herschel PACS/SPIRE bands, it is a Herschel “drop-out” with S_870/S_500 ≥ 0.5. The 870 μm emission is extended and centered on the brightest cluster galaxy, suggesting either a multiply imaged background source or substructure in the Sunyaev-Zel’dovich increment due to inhomogeneities in the hot cluster gas of this merging cluster. We discuss both interpretations with emphasis on the putative lensed source. Based on the observed properties and on our lens model we find that this source may be the first submillimeter galaxy (SMG) with a moderate far-infrared (FIR) luminosity (L_FIR < 10^12 L_⊙) detected so far at z > 4. In deep HST observations we identified a multiply imaged z ~ 6 source and measured its spectroscopic redshift to be z = 6.107 with VLT/FORS. This source may be associated with the putative SMG, but it is most likely offset spatially by 10−30 kpc and they may be interacting galaxies. With a FIR luminosity in the range [5−15] × 10^11 L_⊙ corresponding to a star formation rate in the range [80−260] M_⊙ yr^-1, this SMG would be more representative of the z > 4 dusty galaxies than the extreme starbursts detected so far. With a total magnification of ~25 it would open a unique window to the normal dusty galaxies at the end of the epoch of reionization.
Resumo:
This paper shows the results of an experimental analysis on the bell tower of “Chiesa della Maddalena” (Mola di Bari, Italy), to better understand the structural behavior of slender masonry structures. The research aims to calibrate a numerical model by means of the Operational Modal Analysis (OMA) method. In this way realistic conclusions about the dynamic behavior of the structure are obtained. The choice of using an OMA derives from the necessity to know the modal parameters of a structure with a non-destructive testing, especially in case of cultural-historical value structures. Therefore by means of an easy and accurate process, it is possible to acquire in-situ environmental vibrations. The data collected are very important to estimate the mode shapes, the natural frequencies and the damping ratios of the structure. To analyze the data obtained from the monitoring, the Peak Picking method has been applied to the Fast Fourier Transforms (FFT) of the signals in order to identify the values of the effective natural frequencies and damping factors of the structure. The main frequencies and the damping ratios have been determined from measurements at some relevant locations. The responses have been then extrapolated and extended to the entire tower through a 3-D Finite Element Model. In this way, knowing the modes of vibration, it has been possible to understand the overall dynamic behavior of the structure.
Resumo:
Beijing is one of the most water-stressed cities in the world. Due to over-exploitation of groundwater, the Beijing region has been suffering from land subsidence since 1935. In this study, the Small Baseline InSAR technique has been employed to process Envisat ASAR images acquired between 2003 and 2010 and TerraSAR-X stripmap images collected from 2010 to 2011 to investigate land subsidence in the Beijing region. The maximum subsidence is seen in the eastern part of Beijing with a rate greater than 100 mm/year. Comparisons between InSAR and GPS derived subsidence rates show an RMS difference of 2.94 mm/year with a mean of 2.41 ± 1.84 mm/year. In addition, a high correlation was observed between InSAR subsidence rate maps derived from two different datasets (i.e., Envisat and TerraSAR-X). These demonstrate once again that InSAR is a powerful tool for monitoring land subsidence. InSAR derived subsidence rate maps have allowed for a comprehensive spatio-temporal analysis to identify the main triggering factors of land subsidence. Some interesting relationships in terms of land subsidence were found with groundwater level, active faults, accumulated soft soil thickness and different aquifer types. Furthermore, a relationship with the distances to pumping wells was also recognized in this work.
Resumo:
Zhou Peichun hua.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Plan de La ville de Peking capitale de l'empire de la Chine, située par les 39.d 54 m. Lat. Septr.le = Grondetekening der Stad Peking Hoofdstad van China, op 39 Graaden en 54 Minuuten Noorderbreedte, J. v. Schley, direx. It was published in 1749. Scale [ca. 1:90,000]. Covers Beijing, China. Map in French and Dutch.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM Zone 50N, meters, WGS 1984) projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map.This map shows features such as drainage, fortification, city entrances, selected buildings pictorially, ground cover, cemeteries, and more. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Pékin. It was published by A. Nachbaur in 1900. Scale 1:25,000. Covers Beijing, China. Map in French. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM Zone 50N, meters, WGS 1984) projected. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map.This map shows features such as roads, railroads and stations, drainage, selected buildings, temples, pagodas, mosques, missions, French official buildings, state buildings, tourist locations, ground cover, parks, and more.This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
Beijing, China street centerline vectors with road type attributes extracted from DigitalGlobe QuickBird CitySphere high-resolution (60cm) satellite imagery ortho mosaics.
Resumo:
The study presents an overview of the impact of the main investment tools of the EU budget. The focus is on the increasing role of the financial instruments, which are fundamentally changing the budget’s nature and reach. Through these instruments, the EU can invest more efficiently in more areas and mobilise a multiple of funds. The EU budget has the potential to influence the European economy much more than its modest size in terms of GDP may suggest.
Resumo:
The study presents an overview of the impact of the main investment tools of the EU budget. The focus is on the increasing role of the financial instruments, which are fundamentally changing the budget’s nature and reach. Through these instruments, the EU can invest more efficiently in more areas and mobilise a multiple of funds. The EU budget has the potential to influence the European economy much more than its modest size in terms of GDP may suggest.
Resumo:
The goal of this publication is to attempt to assess the thirteen years (2001- -2014) of the West’s military presence in the countries of post-Soviet Central Asia, closely associated with the ISAF and OEF-A (Operation Enduring Freedom – Afghanistan) missions in Afghanistan. There will also be an analysis of the actual challenges for the region’s stability after 2014. The current and future security architecture in Central Asia will also be looked at closely, as will the actual capabilities to counteract the most serious threats within its framework. The need to separately handle the security system in Central Asia and security as such is dictated by the particularities of political situation in the region, the key mechanism of which is geopolitics understood as global superpower rivalry for influence with a secondary or even instrumental role of the five regional states, while ignoring their internal problems. Such an approach is especially present in Russia’s perception of Central Asia, as it views security issues in geopolitical categories. Because of this, security analysis in the Central Asian region requires a broader geopolitical context, which was taken into account in this publication. The first part investigates the impact of the Western (primarily US) military and political presence on the region’s geopolitical architecture between 2001 and 2014. The second chapter is an attempt to take an objective look at the real challenges to regional security after the withdrawal of the coalition forces from Afghanistan, while the third chapter is dedicated to analysing the probable course of events in the security dimension following 2014. The accuracy of predictions time-wise included in the below publication does not exceed three to five years due to the dynamic developments in Central Asia and its immediate vicinity (the former Soviet Union, Afghanistan, Pakistan, Iran), and because of the large degree of unpredictability of policies of one of the key regional actors – Russia (both in the terms of its activity on the international arena, and its internal developments).
Resumo:
From the Introduction. In 2012, China approached the countries of Central-Eastern Europe (CEE) with a proposal concerning regional cooperation in the ‘16+1’ formula. According to Chinese analysts, the rationale behind this breakthrough decision was Beijing’s acknowledgment of the growing importance of the region’s states within the European Union as well as a partial elimination of the ideological differences which had hamstrung cooperation in previous years. It seems that the eurozone crisis may be perceived as the reason for the CEE states’ increased interest in developing their cooperation with China. These circumstances have opened a ‘window of opportunity’ which Beijing has decided to exploit to create a kind of bridgehead in the region which it could later use in its further economic expansion in Europe. Apart from opening the CEE region up for investments, the ‘16+1’ format was intended to facilitate the shaping of relations between China and the EU and to become a tool in building a positive image for China. Chinese experts agree that after three years of functioning, the ‘16+1’ regional cooperation format has helped Beijing achieve its goals only to a limited extent. The major obstacles have included: the immense diversification of the region, barriers related to EU law, insufficient expertise on the part of Chinese companies, the asymmetry of economic needs on both sides, and no willingness within the region itself to develop cooperation. Regardless of the limited effectiveness of activities carried out so far, China has continued its ‘16+1’ initiative. This continuation and the progressing institutionalisation of cooperation in the ‘16+1’ format have often seemed superficial. China has been using this multi-party formula to improve its long-term bilateral relations with selected states in the region and thereby to create a basis for Beijing’s political and economic presence in Central-Eastern Europe.
Resumo:
The understanding of the continental carbon budget is essential to predict future climate change. In order to quantify CO₂ and CH₄ fluxes at the regional scale, a measurement system was installed at the former radio tower in Beromünster as part of the Swiss greenhouse gas monitoring network (CarboCount CH). We have been measuring the mixing ratios of CO₂, CH₄ and CO on this tower with sample inlets at 12.5, 44.6, 71.5, 131.6 and 212.5 m above ground level using a cavity ring down spectroscopy (CRDS) analyzer. The first 2-year (December 2012–December 2014) continuous atmospheric record was analyzed for seasonal and diurnal variations and interspecies correlations. In addition, storage fluxes were calculated from the hourly profiles along the tower. The atmospheric growth rates from 2013 to 2014 determined from this 2-year data set were 1.78 ppm yr⁻¹, 9.66 ppb yr⁻¹ and and -1.27 ppb yr⁻¹ for CO₂, CH₄ and CO, respectively. After detrending, clear seasonal cycles were detected for CO₂ and CO, whereas CH₄ showed a stable baseline suggesting a net balance between sources and sinks over the course of the year. CO and CO₂ were strongly correlated (r² > 0.75) in winter (DJF), but almost uncorrelated in summer. In winter, anthropogenic emissions dominate the biospheric CO₂ fluxes and the variations in mixing ratios are large due to reduced vertical mixing. The diurnal variations of all species showed distinct cycles in spring and summer, with the lowest sampling level showing the most pronounced diurnal amplitudes. The storage flux estimates exhibited reasonable diurnal shapes for CO₂, but underestimated the strength of the surface sinks during daytime. This seems plausible, keeping in mind that we were only able to calculate the storage fluxes along the profile of the tower but not the flux into or out of this profile, since no Eddy covariance flux measurements were taken at the top of the tower.