998 resultados para Drill core analysis.
Resumo:
North Atlantic climate variations are reflected in sedimentary records from the northern Indian Ocean in which two basins, the Arabian Sea and the Bay of Bengal, are strongly affected by the monsoon. Contrary to the Bay of Bengal the Arabian Sea plays an important role in the global marine nitrogen cycle. In its mid-water oxygen minimum zone (OMZ) bioavailable fixed nitrogen is reduced to nitrogen gas (NO3- - > N2), whereas oxygen concentrations are slightly above the threshold of nitrate reduction in the OMZ of the Bay of Bengal. A coral colony (Porites lutea) growing south of Port Blair on the Andaman Islands in the Bay of Bengal was studied for its response to changes in the monsoon system and its link to temperature changes in the North Atlantic Ocean, between 1975 and 2006. Its linear extension rates, d13C and d18O values measured within the coral skeleton reveal a strong seasonality, which seems to be caused by the monsoon-driven reversal of the surface ocean circulation. The sampling site appears to be influenced by low salinity Bay of Bengal Water during the NE monsoon (boreal winter) and by the high salinity Arabian Sea Water during the SW monsoon in summer. The high salinity Arabian Sea Water circulates along with the Summer Monsoon Current (S-MC) from the Arabia Sea into the Bay of Bengal. Decreasing d18O and reconstructed salinity values correlate to the increasing SSTs in the North Atlantic Ocean indicating a reduced influence of the S-MC at the sampling site in the course of northern hemispheric warming. During such periods oxygen-depletion became stronger in the OMZ of the Arabian Sea as indicated by the sedimentary records. A reduced propagation of oxygen-depleted high salinity Arabian Sea Water into the Bay of Bengal could be a mechanism maintaining oxygen concentration above the threshold of nitrate reduction in the OMZ of the Bay of Bengal in times of global warming.
Resumo:
Physical properties measurements provide a relatively inexpensive and fast way to obtain high-resolution estimates of the variations in sedimentological properties. To better resolve the validity and cause of the geophysical signals measured by the Ocean Drilling Program (ODP) shipboard multisensor track (MST) instruments, 223 x 10 cm**3 core samples were collected at 4 cm intervals in Core 167-1016B-17H at the California Margin Conception Transect for the measurements of index properties, carbonate content, and opal content. This core was chosen because hole-to-hole stratigraphic correlation of MST data suggested that Core 17H corresponds to a depth interval that displays the greatest range of amplitude of many physical properties.
Resumo:
Time control is essential for the reconstruction of geological processes. We use a combination of relative and absolute methods to establish the chronology and related paleoclimatic processes for Late Neogene lacustrine sediment from the Ptolemais Basin, northern Greece. We determined changes in magnetic polarity and correlated them to the global magnetic polarity time scale, which again is calibrated by radiometric methods, to provide a low-resolution age model for the Upper Miocene to Lower Pliocene (7 - 3 Ma). Sedimentary successions show rhythmic alterations of lignites, clays, and marls. Using photospetrometry we measured this variability at 1-cm resolution, and correlated the pattern to known changes in earth's orbital parameters, namely to eccentricity and precession. For 230-m long borehole KAP-107 from the Amynteon Sub-Basin we obtained a high-resolution age model that spans 2 myr from 5.1 to 3.1 Ma, with age control points at insolation maxima (20-kyr resolution). We recommend using photospectrometry as reliable tool to establish orbital-based chronologies and to reconstruct paleoclimate variability at high resolution.
Stable isotopes and age analysis from Islandiella norcrossi measured on sediment core HUD91/039-008P