931 resultados para Doenças e pragas


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Microbiologia Agropecuária - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The currently main development model on global society is driven by an economic rationality that endangers the environment and social justice. More and more, attention to this way of production and consumption is increasing, boosting research for sustainable development, with an environmental rationality that can harmonize nature preservation and welfare of all socioeconomic classes. One of the efforts on this sense is changing the sources supplying the energy demand, replacing fossil fuels for renewable and cleaner sources, such as biofuels. Carthamus tinctorius (safflower) is an oilseed crop with potential for biodiesel production, with good oil yield and chemical profile, allied to good adaptation to climates such like the northeastern semiarid lands of Brazil. With public policies fomentation, the use of this species may be an interesting alternative for family farming. In farming in general, the use of pesticides to prevent and combat diseases and plagues is common, which is not a sustainable practice. Thus, there are researched alternative, less dangerous substances. In this study, it was aimed to assess if neem (Azadirachta indica) leaf extract (20% m/v) and Bordeaux mixture (copper sulfate) have effects on safflower. It was also aimed to verify acceptance of farmers on safflower crop in Apodi, a municipality in Rio Grande do Norte state, Brazil, in view of it being localized in the aimed region for this crop cultivation. Besides that, understanding that the farmers’ knowledge and inclination to adopt the crop is fundamental for the introduction of this species and socioeconomic growth due to its exploration. In addition, a booklet with basic information on safflower was produced. In the field experiment, the fungicides were pulverized on plants cultivated in field experimental plots, with collection of leaf samples for analysis on anatomy, cuticle, and epicuticular wax morphology, the protective layer that interfaces with the surrounding ambient. In Apodi, forty-five farmers from Potiguar Cooperative of Apiculture and Sustainable Rural Development (COOPAPI) underwent semi-structured interviews, which also addressed their assessment on currently cultivated crops and perception of pesticide uses and sustainable alternatives. After comparing using analysis of variance, it was found that there was no difference between treatments in the experiment, as well as no anatomical or morphological modifications. Safflower acceptation among farmers was wide, with 84% of interviewees believing in a perspective of good incomes. The current scenario, comprised of low crop diversity, fragile in face of droughts and plagues, can partially explain this opinion. The booklet was effective in catching people attention for the species potential. There was wide acknowledgement on the importance of alternative pesticides, justified by health security. Based on the assessed parameter in the results of this research, the treatments here utilized may be recommended as fungicides for safflower. Given the crop susceptibility to fungi in heavy rainy period, it is advised that its potential introduction on the region shall be focused on semiarid areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coffee plants were introduced in Brazil in the Northern State of Para around 1727. Two major diseases have affected coffee trees in the country. One is rust, caused by fungus Hemileia vastatrix and accountable for production losses up to 50%. The other one is Cercospora leaf spot, caused by fungus Cercospora coffeicola endemic to all Brazilian coffee farms and, therefore, economically critical due to production losses both in the plant nursery and in the field. Availability of resistant varieties has been a constant challenge for breeders. Research programs play an important role in the search for new resistant and/or tolerant genotypes, since over time plants can become susceptible to new, genetically variable races of pathogens. This study aimed to evaluate the incidence and severity of such diseases, the resistance of different coffee genotypes to H. vastatrix and C. coffeicola pathogens, as well as the productivity of said genotypes in dense planting system. The experimental design consisted of randomized blocks, with twelve genotypes (treatments) and two replications (blocks). SISVAR® program was used to analyze data and compare them building on Scott-Knott test and Tukey’s test with a probability of 5%. Disease incidence and severity percentage were assessed for both Cercospora leaf spot and rust. Means were used to calculate the area under the disease progress curve (AUDPC) of both diseases. As to rust, the most resistant genotypes were H586-6, IBC 12, and H556-7 H567-6. As to Cercospora leaf spot and productivity, no statistical differences were found across genotypes. The dense planting system did not impair plant development, but favored disease evolution given the microclimate it produces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Currently, the management recommendations for asian soybean rust (ASR) has been based on the application of protective fungicides mixed with triazoles and stronilurins. Thus, this study aimed at assessing whether the increased productivity provided by the application of protective fungicides is due solely to the fungicidal action of the product or some physiological changes in the plant and which the latter would be. The experiment was conducted from March to July 2015 at the experimental station of Udi Research and Development in Uberlândia-MG, with the cultivar 97Y07 RR. The experimental design chosen for this study was comprised of a randomized block with four replications and 16 treatments: check, fluxapyroxad + pyraclostrobin (116.55 + 58.45 g ha-1), azoxystrobin + benzovindiflupir (90 + 45 g ha-1), trifloxystrobin + prothioconazole (60 + 70 g ha-1), tebuconazole + picoxystrobin (100 + 60 g ha-1), picoxystrobin + cyproconazole (60 + 24 g ha-1), mancozeb (1125 g ha-1), azoxistrobina + tebuconazole + difenoconazole (60 + 75 + 120 g ha-1), azoxystrobin + tebuconazole + difenoconazole + chlorothalonil ( 60 + 120 + 75 + 1440 g ha-1), and mistures fluxapyroxad + pyraclostrobin + mancozeb, azoxystrobin + benzovindiflupir + mancozeb, trifloxystrobin + prothioconazole + mancozeb, tebuconazole + picoxystrobin + mancozeb, picoxystrobin + cyproconazole + mancozeb, azoxystrobin + tebuconazole + difenoconazole + mancozeb, and azoxystrobin + benzovindiflupir + chlorothalonil, from the aforesaid doses. The first application of the treatments occurred in R1, in the absence of symptoms. The number of applications, intervals and the use of adjuvants were performed according to the recommendations by manufacturers. The variables analyzed were: disease severity, concentration of chlorophylls and carotenoids, photosynthetic rate (A), transpiration rate (E), stomatal conductance (gs), internal carbon concentration (Ci), instantaneous efficiency in water use (A/E), intrinsic water use efficiency (A/gs), and carboxylation efficiency (A/C). With these data collected, this study set to date the progress curve of each variable (AUPC). At the end of the crop cycle, the average of pods per plant was quantified, grain per pod, productivity and weight of 1,000 grains. It was concluded that: the addition of mancozeb to fluxapyroxad + pyraclostrobin, azoxystrobin + benzovindiflupir, trifloxystrobin + prothioconazole and tebuconazole + picoxystrobin potentiated the ASR control; adding mancozebe to the mixture azoxystrobin + benzovindiflupir provided better control of the disease compared to the addition of chlorothalonil; mancozeb amounts to AUPC concentration of photosynthetic pigments and when added to axozystrobin + tebuconazole + difenoconazole, increases the AUPC for total chlorophyll concentration, as well as when chlorothalonil was added; mancozeb added to the mix fluxapyroxad + pyraclostrobin raised the AUPC for A/Ci and A/gs, increasing the W1,000G and crop productivity; the addition of protectors similarly reflected on the productivity of culture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soybean crop is substantially important for both Brazilian and international markets. A relevant disease that affects soybeans is powdery mildew, caused by fungus Erysiphe diffusa. The objective of this master’s thesis was to analyze physiological changes produced by fungicides in two greenhouse-grown soybean genotypes (i.e., Anta 8500 RR and BRS Santa Cruz RR) naturally infected with powdery mildew. A complete randomized block design was used with six replications in a 2x5 factorial arrangement. Treatments consisted of applications of Azoxystrobin, Biofac (fermented solution of Penicillium sp.), Carbendazim or Picoxystrobin fungicides, and a Control (no fungicide application). Three applications were performed in the experimental period, and each eventually represented a period of data collection. Gas exchanges, chlorophyll content, fluorescence of chlorophyll a and disease severity were measured twice a week. Dry grain mass production was measured at the end of the experiment. Areas under progression curve of variables were submitted to both ANOVA and Tukey’s test at 5% significance. Treatments Azoxystrobin, Biofac and Picoxystrobin had higher photosynthetic rates than Control in the second period, with genotype Anta having higher rate than Santa Cruz. Biofac had higher transpiration rate than Control in the second period, while Biofac and Picoxystrobin had higher figures in Santa Cruz in the third period. Carbendazim had greater stomatal conductance in Anta, whilst Azoxystrobin, Biofac and Picoxystrobin had greater values than Carbendazim in Santa Cruz. Biofac and Picoxystrobin had greater intercellular CO2 concentration in Santa Cruz. Azoxystrobin and Picoxystrobin had greater instantaneous water use efficiency than Control, with Anta being more efficient than Santa Cruz. Biofac and Picoxystrobin had greater intrinsic water use efficiency in Anta, while Carbendazim increased efficiency in Santa Cruz. Azoxystrobin, Biofac and Picoxystrobin had greater carboxylation efficiency than Control in the second period, with Anta being more efficient than Santa Cruz. Azoxystrobin and Biofac had greater contents of chlorophylls a, b and a+b than Control in the second period. Azoxystrobin had greater effective quantum yield than Control and Picoxystrobin. All treatments faced increasing disease severity over time, with Anta being less resistant than Santa Cruz. As for production, data showed that: (1) Santa Cruz was more productive than Anta, having the greatest dry grain mass with Carbendazim, and (2) Anta’s lower disease severity did not translate into higher productions. In conclusion, strobilurins (Azoxystrobin and Picoxystrobin) and Biofac performed similarly as to their physiological effects on soybeans; however, these effects did not lead to increased dry grain mass by the end of the experiment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crops are affected by pests and diseases that decrease productivity. Among them are the damping off of seedlings that can occur in pre and post-emergence. In bean crops, cucumber and beet these diseases occur, being caused by various pathogens, especialy fitopathogenic fungi. Several measures are used for the controle of such diseases, among them, is the chemical seed treatment fungicides. However, society has become increasingly concerned about the quality and food and environmental contamination, generation a growting search for sensitive products to humans and the environment. The use of essential oils to control plant pathogens is an example of alternative tested by science in the search for less aggressive technologies. This study aimed to evaluate the efficiency of the use of essential oil Aloysia citriodora, in control of pathogens causing damping off in beans, cucumber and beet. This thesis was divided in four chapters, the introductory first, and the other addressing the control of Pythium sp. in beans, Sclerotinia sclerotiorum on cucumber, and Fusarium sp. on beet. The methodology consisted of four experiments in each pathosystem, with all the work done at the Federal Technological University of Parana, Campus Dois Vizinhos. In the first experiment evaluated the fungistatic and fungicidal effect of the essential oil of A. citriodora on PDA in vitro in mycelial growth of pathogens studied. In the second experiment evaluated the in vitro effect of essential oil concentrations of A. citriodora in BD medium on microscope slides, on the germination of sporangia Pythium sp. and conidia Fusarium sp., and in Petri dishes with PDA medium, the sclerotia germination speed index of S. sclerotiorum. In the third experiment, we evaluated in germination test in paper roll (PR), the phytotoxic effect or not the use of essential oil concentrations of A. citriodora in dry bean seed, cucumber and beet. The variables used to assess this experiment were the germination percentage, mediun green mass per plant and average length of seedlings. In the fourth experiment we assessed the effect of treating bean seeds, cucumber and beet with essential oil contents of A. citriodora, seeds in their subsequent substrates contamined with pathogens studied, Pythium sp., S. sclerotiorum and Fusarium sp. In this experiment we used the following variables: percentage of emergence, percentage of post-emergence damping off, green average mass per plant, average length per plant and biochemical analyzes. The biochemistry of plant tissues evaluated were as follows: protein content, enzymatic activities of peroxidases, phenylalanine ammonia-liase (PAL), chitinases and β-1,3-glucanases. The in vitro results show that the essential oil has fungistatic and fungicidal effect on mycelial growth, on sporangia germination, conidia and sclerotia of the pathogens studied in this work, wich may be related to its major components, citral and limonene. The oil also exhibits low phytotoxicity to seeds of the species studied, only in beans decreases germination in most studied dosage (0,25%), cucumber also in the higher dosage (0,25%) reduce the length of seedlings, and beet there were no negative effects to the seedlings. In the test in substrate contaminated with the pathogens, the use of essential oil: increased germination and decreased post emergence damping off of beans seedlings; at a concentration of 0,0625% decreases post emergence damping off in cucumber. In biochemical analyzes found an increase in the enzymatic activity of peroxidases and β-1,3-glucanases on beans, and glucanases on cucumber, and increased enzyme activity of peroxidases on beet, showing action in resistance induction at damping off.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fungus Rhizoctonia solani is a soil borne pathogen that causes damage to various crops. The chemical control, when managed incorrectly, can be harmful to the environment, which makes the study of alternative control important. This study aimed to evaluate the ability of different doses of Liquid swine manure (LSM), with and without the retention of gases, at different soil pH levels, to control R. solani in beet. An inoculum of the fungus R. solani was on rice grains, which had been previously sterilised. The experiments were set up in a greenhouse in a completely randomised block design, arranged in a three-factor 2 x 2 x 5 scheme, comprising of soil pH levels (4.8 and 7.2) x with and without gas retention x LSM dose (0, 5, 10, 15 and 20%), with four replications per treatment. To setup the experiments, 4 kg of soil of each pH level were packed separately into plastic bags. Subsequently, the soil of each bag was infested with 15 g of fungus inoculum/kg of soil, and moistened as necessary. After seven days of infestation of the soil with the pathogen the different doses of LSM were incorporated separately into the bags, the bags designated as the gas retention treatment were closed, while those designated as the gas release treatment were left open. After seven days, part of the soil from each bag was packed separately into 16 cells of 128 cell Styrofoam trays, which were then seeded with two beet seeds per cell. The other part of the soil was placed in 2 litre pots, to conduct the quantification of microbial activity, through the method of CO2 release, 21 days after the experiment was setup. Seedling emergence and damping-off evaluations were performed daily for 21 days consecutively. The data was submitted to analysis of variance, and when significant were submitted to regression analysis or Tukey at 5% probability of error. The experiments were repeated twice. According to the results obtained, there was a suppressive effect of LSM on R. solani. For the variable emergence, the 10% dose of LSM resulted in the largest number of emerging plants in the two soil pH levels studied, whether or not gas was retained. Seedling dampingoff decreased with increasing volumes of LSM incorporated into the soil. The soil with the pH level of 7.2 presented less seedling damping-off than the soil with a pH level of 4.8. The retention of gases provided greater control of R. solani in the higher LSM doses and in soil with a pH level of 7.2. Also noted in this study that there was a significant increase in microbial activity with increasing doses of LSM when applied to soil with pH levels of 4.8 and 7.2. Based on these results, it was concluded that the 10% dose of LSM provided the best control of R. solani without harming seedling emergence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Fitopatologia, Programa de Pós-Graduação em Fitopatologia, 2015.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Programa de Pós-Graduação em Agronomia, 2016.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Fitopatologia, Programa de Pós-Graduação em Fitopatologia, 2016.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As mudanças climáticas causadas pela degradação da camada de ozônio e pelo aumento da emissão de gases causadores do efeito estufa, podem ocasionar alterações não somente aos seres humanos, mamíferos, répteis ou aves, mas também aos microrganismos. Dentro deste contexto, o aumento nos níveis de radiação solar incidente na superfície da Terra pode afetar as interações que ocorrem entre bactérias e plantas, alterando tanto a ocorrência de doenças como as interações benéficas entre estes organismos. Muitos são os gêneros de bactérias que interagem com as plantas, colonizando os mais diferentes nichos presentes neste hospedeiro. Dentre os grupos bacterianos destacam-se os gêneros Bacillus sp e Pseudomonas sp, que possuem efeitos benéficos como a promoção de crescimento vegetal e a proteção de plantas contra doenças e pragas. Dessa forma, o atual trabalho tem a princípio, como enfoque, constatar a resistência de isolados dos dois gêneros mencionados, à radiação ultravioleta C (200 a 250 nm). Os resultados obtidos demonstram maior resistência da linhagem de Bacillus sp à radiação ultravioleta C em comparação à linhagem de Pseudomonas sp. fato que possivelmente está relacionado com a capacidade de produzir esporos, característica do gênero Bacillus. Este trabalho fornece dados iniciais para futuras avaliações do comportamento destas bactérias quando em interação com plantas e sob maiores níveis de radiação ultravioleta no ambiente.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A compreensão da Agricultura não é feita somente levando-se em consideração os aspectos técnicos de sua formação. Faz-se importante observar que tais aspectos estão vinculados aos elementos externos que influenciam diretamente no seu desenvolvimento, alterando, muitas vezes, os resultados finais. É assim que o clima aparece como elemento indispensável na agricultura. O cerne desta pesquisa pauta-se na análise do clima na atividade agrícola em escala têmporo-espacial no município de Poço Verde-Se Brasil. METODOLOGIA. A elaboração se estabeleceu a partir de um levantamento bibliográfico e pesquisa de campo que auxiliaram como embasamento teórico. RESULTADOS E DISCUSSÕES: Nota-se que o meio ecológico é um fator importante para o crescimento da lavoura, além dos fatores econômicos. Embora existam outros fatores como a genética, a irrigação, a hidroponia, porém não é uma realidade do município. As doenças e pragas prejudicam o desenvolvimento das lavouras e causam danos econômicos aos agricultores. A falta de capital suficiente é um dos problemas no setor agrícola deste município. Apresenta áreas com técnicas tradicionais de produção, mas também existem propriedades desenvolvendo agricultura industrializada. Conclui-se que é preciso de melhorias em fornecimento agrícolas, planejamento de zoneamento e irrigação, que possibilitaria uma melhoria socioeconômica aos agricultores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Uma das principais razões da fragilidade dos agroecossistemas, especialmente os de grande escala, como o ?soybean belt?, o ?corn belt?, nos Estados Unidos e as enormes áreas cultivadas, com cana?de?açúcar, milho, pastagens, soja e trigo e outras culturas no Brasil, com alto nível de especialização, é a sua baixa complexidade biológica resultante do pequeno número de espécies da flora e da fauna que os constituem. Ecossistemas naturais como florestas tropicais ou subtropicais, savanas e cerrados, abrigam um grande número de espécies animais e vegetais e, portanto, são possuidores de um alto nível de biodiversidade. Esta biodiversidade significa complexidade biológica, que, por sua vez, constitui um dos principais elementos amortecedores e suavizadores dos impactos resultantes da variabilidade climática, especialmente de origem hídrica, e da ocorrência de surtos de doenças e pragas que ameaçam os componentes animais e vegetais destes ecossistemas naturais.