984 resultados para Dividing-engine.
Resumo:
The objective of this study was to examine the operating characteristics of a light duty multi cylinder compression ignition engine with regular gasoline fuel at low engine speed and load. The effects of fuel stratification by means of multiple injections as well as the sensitivity of auto-ignition and burn rate to intake pressure and temperature are presented. The measurements used in this study included gaseous emissions, filter smoke opacity and in-cylinder indicated information. It was found that stable, low emission operation was possible with raised intake manifold pressure and temperature, and that fuel stratification can lead to an increase in stability and a reduced reliance on increased temperature and pressure. It was also found that the auto-ignition delay sensitivity of gasoline to intake temperature and pressure was low within the operating window considered in this study. Nevertheless, the requirement for an increase of pressure, temperature and stratification in order to achieve auto-ignition time scales small enough for combustion in the engine was clear, using pump gasoline. Copyright © 2009 SAE International.
Resumo:
It is well known that accurate EGR control is paramount to controlling engine out emissions during steady state and transient operation of a diesel engine. The direct measurement of EGR is however non-trivial and especially difficult in engines with no external EGR control where the intake manifold CO2 levels can be measured more readily. This work studies the EGR behaviour in a medium duty diesel engine with a passive EGR rebreathing strategy for steady state and transient operation. High speed (response time ∼1ms) in-cylinder sampling using modified GDI valves is coupled with high frequency response analysers to measure the cyclic in-cylinder CO2, from which the EGR rate is deduced. It was found that controlling the EGR using the passive rebreathing strategy during certain combined speed and load transients is challenging, causing high smoke and NO emissions. The in-cylinder sampling method coupled with fast CO2 measurement (time constant ∼8ms) in the exhaust port gave insights about the EGR rate during these transients. The complex interaction of the manifold pressures, turbo-charger operation and trapped charge composition from the previous cycle simply can cause high dilution and therefore high smoke levels. The steady state variation of NO emissions with respect to EGR is also studied using a fast NO analyzer (time constant ∼2ms) in the exhaust port. Cyclic variation was found to be up to ±5% at some load conditions. © 2008 SAE International.
Resumo:
Partially premixed compression ignition (PPCI) engines operating with a low temperature highly homogeneous charge have been demonstrated previously using conventional diesel fuel. The short ignition delay of conventional diesel fuel requires high fuel injection pressures to achieve adequate premixing along with high levels of EGR (exhaust gas recirculation) to achieve low NOx emissions. Low load operating regions are typified by substantial emissions of CO and HC and there exists an upper operating load limitation due to very high rates of in-cylinder gas pressure rise. In this study mixtures of gasoline and diesel fuel were investigated using a multi-cylinder light duty diesel engine. It was found that an increased proportion of gasoline fuel reduced smoke emissions at higher operating loads through an increase in charge premixing resulting from an increase in ignition delay and higher fuel volatility. The results of this investigation confirm that a combination of fuel properties, exhibiting higher volatility and increased ignition delay, would enable a widening of the low emission operating regime, but that consideration must be given to combustion stability at low operating loads. Copyright © 2007 SAE International.
Resumo:
Simple air-path models for modern (VGT/EGR equipped) diesel engines are in common use, and have been reported in the literature. This paper addresses some of the shortcomings of control-oriented models to allow better prediction of the cylinder charge properties. A fast response CO2 analyzer is used to validate the model by comparing the recorded and predicted CO2 concentrations in both the intake port and exhaust manifold of one of the cylinders. Data showing the recorded NOx emissions and exhaust gas opacity during a step change in engine load illustrate the spikes in both NOx and smoke seen during transient conditions. The predicted cylinder charge properties from the model are examined and compared with the measured NOx and opacity. Together, the emissions data and charge properties paint a consistent picture of the phenomena occurring during the transient. Alternative strategies for the fueling and cylinder charge during these load transients are investigated and discussed. Experimental results are presented showing that spikes in both NOx and smoke can be avoided at the expense of some loss in torque response. Even if the torque response must be maintained, it is demonstrated that it is still possible to eliminate spikes in NOx emissions for the transient situation being examined. Copyright © 2006 SAE International.
Resumo:
A novel technique, using a 'flying' Hot Wire Anemometer is described; it is shown how the turbulent structure in a motored engine, using a high molecular weight gas as the working fluid, may be investigated with relative simplicity and very little engine modification. Initial results are presented for integral and micro length scales, which are within the range expected based on previous work. Copyright © 1987 Society of Automotive Engineers, Inc.
Resumo:
In order to understand why emissions of Particulate Matter (PM) from Spark-Ignition (SI) automobiles peak during periods of transient operation such as rapid accelerations, a study of controlled, repeatable transients was performed. Time-resolved engine-out PM emissions from a modern four-cylinder engine during transient load and air/fuel ratio operation were examined, and the results could be fit in most cases to a first order time response. The time constants for the transient response are similar to those measured for changes in intake valve temperature, reflecting the strong dependence of PM emissions on the amount of liquid fuel in the combustion chamber. In only one unrepeatable case did the time response differ from a first order function: showing an overshoot in PM emissions during transition from the initial to the final steady state PM emission level. PM emissions during controlled, motored start-up experiments show a peak at start-up followed by a period during which emissions are either relatively constant or drift somewhat. When the fuel injection and ignition are shut off, PM emissions also peak briefly, but rapidly decay to low levels. Qualitative implications on the study and modeling of PM emissions during transient engine operation are discussed. Copyright © 1999 Society of Automotive Engineers, Inc.
Resumo:
In order to understand how unburned hydrocarbons emerge from SI engines and, in particular, how non-fuel hydrocarbons are formed and oxidized, a new gas sampling technique has been developed. A sampling unit, based on a combination of techniques used in the Fast Flame Ionization Detector (FFID) and wall-mounted sampling valves, was designed and built to capture a sample of exhaust gas during a specific period of the exhaust process and from a specific location within the exhaust port. The sampling unit consists of a transfer tube with one end in the exhaust port and the other connected to a three-way valve that leads, on one side, to a FFID and, on the other, to a vacuum chamber with a high-speed solenoid valve. Exhaust gas, drawn by the pressure drop into the vacuum chamber, impinges on the face of the solenoid valve and flows radially outward. Once per cycle during a specified crank angle interval, the solenoid valve opens and traps exhaust gas in a storage unit, from which gas chromatography (GC) measurements are made. The port end of the transfer tube can be moved to different locations longitudinally or radially, thus allowing spatial resolution and capturing any concentration differences between port walls and the center of the flow stream. Further, the solenoid valve's opening and closing times can be adjusted to allow sampling over a window as small as 0.6 ms during any portion of the cycle, allowing resolution of a crank angle interval as small as 15°CA. Cycle averaged total HC concentration measured by the FFID and that measured by the sampling unit are in good agreement, while the sampling unit goes one step further than the FFID by providing species concentrations. Comparison with previous measurements using wall-mounted sampling valves suggests that this sampling unit is fully capable of providing species concentration information as a function of air/fuel ratio, load, and engine speed at specific crank angles. © Copyright 1996 Society of Automotive Engineers, Inc.
Resumo:
Recent work has investigated the use of O2 concentration in the intake manifold as a control variable for diesel engines. It has been recognised as a very good indicator of NOX emissions especially during transient operation, however, much of the work is concentrated on estimating the O2 concentration as opposed to measuring it. This work investigates Universal Exhaust Gas Oxygen (UEGO) sensors and their potential to be used for such measurements. In previous work it was shown that these sensors can be operated in a controlled pressure environment such that their response time is of the order 10ms. In this paper, it is shown how the key causes of variation (and therefore potential sources of error) in sensor output, namely, pressure and temperature are largely mitigated by operating the sensors in such an environment. Experiments were undertaken on a representative light duty diesel engine using modified UEGO sensors in the intake and exhaust system. Results from other fast emissions measuring equipment are also shown and it is seen that the UEGO sensors are capable of giving an accurate measurement of O2 and EGR. Copyright © 2013 SAE International.
Resumo:
Delivering acceptable low end torque and good transient response is a significant challenge for all turbocharged engines. As downsized gasoline engines and Diesel engines make up a larger and larger proportion of the light-duty engines entering the market, the issue takes on greater significance. Several schemes have been proposed to improve torque response in highly boosted engines, including the use of electrical assist turbochargers and compressed air assist. In this paper we examine these methods with respect to their effectiveness in improving transient response and their relative performance along with some of the practical considerations for real world application. Results shown in this paper are from 1-D simulations using the Ricardo WAVE software package. The simulation model is based on a production light-duty Diesel engine modified to allow the introduction of compressed air at various points in the air-path as well as direct torque application to the turbocharger shaft (such as might be available from an electrical assist turbocharger). Whilst the 1-D simulation software provides a suitable environment for investigating the various boost assistance options, the overall air path performance also depends upon the control system. The introduction of boost assistance complicates the control in two significant ways: the system may run into constraints (such as compressor surge) that are not encountered in normal operation and the assistance introduces an additional control input. Production engine controllers are usually based on gain-scheduled PID control and extensive calibration. For this study, the non-linear nature of the engine together with the multiple configurations considered and the slower than real-time execution of 1-D models makes such an approach time consuming. Moreover, an ad-hoc approach would leave some doubt as to the fairness of comparisons between the different boost-assist options. Model Predictive Control has been shown to offer a convenient approach to controlling the 1-D simulations in a close to optimal manner for a typical Diesel VGT-EGR air path configuration. We show that the same technique can be applied to all the considered assistance methods with only modest calibration effort required. Copyright © 2012 SAE International.
Resumo:
1-D engine simulation models are widely used for the analysis and verification of air-path design concepts and prediction of the resulting engine transient response. The latter often requires closed loop control over the model to ensure operation within physical limits and tracking of reference signals. For this purpose, a particular implementation of Model Predictive Control (MPC) based on a corresponding Mean Value Engine Model (MVEM) is reported here. The MVEM is linearised on-line at each operating point to allow for the formulation of quadratic programming (QP) problems, which are solved as the part of the proposed MPC algorithm. The MPC output is used to control a 1-D engine model. The closed loop performance of such a system is benchmarked against the solution of a related optimal control problem (OCP). As an example this study is focused on the transient response of a light-duty car Diesel engine. For the cases examined the proposed controller implementation gives a more systematic procedure than other ad-hoc approaches that require considerable tuning effort. © 2012 IFAC.
Resumo:
A novel smoke sensor was used to measure the smoke response to the fuel rack on a diesel engine. The conventional modelling methods used for engine control were investigated. The synchronization technique and Recursive Least Square method were applied to engine modelling and two models for controller design were derived.
Resumo:
Growing concerns regarding fluctuating fuel costs and pollution targets for gas emissions, have led the aviation industry to seek alternative technologies to reduce its dependency on crude oil, and its net emissions. Recently blends of bio-fuel with kerosine, have become an alternative solution as they offer "greener" aircraft and reduce demand on crude oil. Interestingly, this technique is able to be implemented in current aircraft as it does not require any modification to the engine. Therefore, the present study investigates the effect of blends of bio-synthetic paraffinic kerosine with Jet-A in a civil aircraft engine, focusing on its performance and exhaust emissions. Two bio-fuels are considered: Jatropha Bio-synthetic Paraffinic Kerosine (JSPK) and Camelina Bio-synthetic Paraffinic Kerosine (CSPK); there are evaluated as pure fuels, and as 10% and 50% blend with Jet-A. Results obtained show improvement in thrust, fuel flow and SFC as composition of bio-fuel in the blend increases. At design point condition, results on engine emissions show reduction in NO x, and CO, but increases of CO is observed at fixed fuel condition, as the composition of bio-fuel in the mixture increases. Copyright © 2012 by ASME.