975 resultados para Distributed software development
Resumo:
Providing support for multimedia applications on low-power mobile devices remains a significant research challenge. This is primarily due to two reasons: • Portable mobile devices have modest sizes and weights, and therefore inadequate resources, low CPU processing power, reduced display capabilities, limited memory and battery lifetimes as compared to desktop and laptop systems. • On the other hand, multimedia applications tend to have distinctive QoS and processing requirementswhichmake themextremely resource-demanding. This innate conflict introduces key research challenges in the design of multimedia applications and device-level power optimization. Energy efficiency in this kind of platforms can be achieved only via a synergistic hardware and software approach. In fact, while System-on-Chips are more and more programmable thus providing functional flexibility, hardwareonly power reduction techniques cannot maintain consumption under acceptable bounds. It is well understood both in research and industry that system configuration andmanagement cannot be controlled efficiently only relying on low-level firmware and hardware drivers. In fact, at this level there is lack of information about user application activity and consequently about the impact of power management decision on QoS. Even though operating system support and integration is a requirement for effective performance and energy management, more effective and QoSsensitive power management is possible if power awareness and hardware configuration control strategies are tightly integratedwith domain-specificmiddleware services. The main objective of this PhD research has been the exploration and the integration of amiddleware-centric energymanagement with applications and operating-system. We choose to focus on the CPU-memory and the video subsystems, since they are the most power-hungry components of an embedded system. A second main objective has been the definition and implementation of software facilities (like toolkits, API, and run-time engines) in order to improve programmability and performance efficiency of such platforms. Enhancing energy efficiency and programmability ofmodernMulti-Processor System-on-Chips (MPSoCs) Consumer applications are characterized by tight time-to-market constraints and extreme cost sensitivity. The software that runs on modern embedded systems must be high performance, real time, and even more important low power. Although much progress has been made on these problems, much remains to be done. Multi-processor System-on-Chip (MPSoC) are increasingly popular platforms for high performance embedded applications. This leads to interesting challenges in software development since efficient software development is a major issue for MPSoc designers. An important step in deploying applications on multiprocessors is to allocate and schedule concurrent tasks to the processing and communication resources of the platform. The problem of allocating and scheduling precedenceconstrained tasks on processors in a distributed real-time system is NP-hard. There is a clear need for deployment technology that addresses thesemulti processing issues. This problem can be tackled by means of specific middleware which takes care of allocating and scheduling tasks on the different processing elements and which tries also to optimize the power consumption of the entire multiprocessor platform. This dissertation is an attempt to develop insight into efficient, flexible and optimalmethods for allocating and scheduling concurrent applications tomultiprocessor architectures. It is a well-known problem in literature: this kind of optimization problems are very complex even in much simplified variants, therefore most authors propose simplified models and heuristic approaches to solve it in reasonable time. Model simplification is often achieved by abstracting away platform implementation ”details”. As a result, optimization problems become more tractable, even reaching polynomial time complexity. Unfortunately, this approach creates an abstraction gap between the optimization model and the real HW-SW platform. The main issue with heuristic or, more in general, with incomplete search is that they introduce an optimality gap of unknown size. They provide very limited or no information on the distance between the best computed solution and the optimal one. The goal of this work is to address both abstraction and optimality gaps, formulating accurate models which accounts for a number of ”non-idealities” in real-life hardware platforms, developing novel mapping algorithms that deterministically find optimal solutions, and implementing software infrastructures required by developers to deploy applications for the targetMPSoC platforms. Energy Efficient LCDBacklightAutoregulation on Real-LifeMultimediaAp- plication Processor Despite the ever increasing advances in Liquid Crystal Display’s (LCD) technology, their power consumption is still one of the major limitations to the battery life of mobile appliances such as smart phones, portable media players, gaming and navigation devices. There is a clear trend towards the increase of LCD size to exploit the multimedia capabilities of portable devices that can receive and render high definition video and pictures. Multimedia applications running on these devices require LCD screen sizes of 2.2 to 3.5 inches andmore to display video sequences and pictures with the required quality. LCD power consumption is dependent on the backlight and pixel matrix driving circuits and is typically proportional to the panel area. As a result, the contribution is also likely to be considerable in future mobile appliances. To address this issue, companies are proposing low power technologies suitable for mobile applications supporting low power states and image control techniques. On the research side, several power saving schemes and algorithms can be found in literature. Some of them exploit software-only techniques to change the image content to reduce the power associated with the crystal polarization, some others are aimed at decreasing the backlight level while compensating the luminance reduction by compensating the user perceived quality degradation using pixel-by-pixel image processing algorithms. The major limitation of these techniques is that they rely on the CPU to perform pixel-based manipulations and their impact on CPU utilization and power consumption has not been assessed. This PhDdissertation shows an alternative approach that exploits in a smart and efficient way the hardware image processing unit almost integrated in every current multimedia application processors to implement a hardware assisted image compensation that allows dynamic scaling of the backlight with a negligible impact on QoS. The proposed approach overcomes CPU-intensive techniques by saving system power without requiring either a dedicated display technology or hardware modification. Thesis Overview The remainder of the thesis is organized as follows. The first part is focused on enhancing energy efficiency and programmability of modern Multi-Processor System-on-Chips (MPSoCs). Chapter 2 gives an overview about architectural trends in embedded systems, illustrating the principal features of new technologies and the key challenges still open. Chapter 3 presents a QoS-driven methodology for optimal allocation and frequency selection for MPSoCs. The methodology is based on functional simulation and full system power estimation. Chapter 4 targets allocation and scheduling of pipelined stream-oriented applications on top of distributed memory architectures with messaging support. We tackled the complexity of the problem by means of decomposition and no-good generation, and prove the increased computational efficiency of this approach with respect to traditional ones. Chapter 5 presents a cooperative framework to solve the allocation, scheduling and voltage/frequency selection problem to optimality for energyefficient MPSoCs, while in Chapter 6 applications with conditional task graph are taken into account. Finally Chapter 7 proposes a complete framework, called Cellflow, to help programmers in efficient software implementation on a real architecture, the Cell Broadband Engine processor. The second part is focused on energy efficient software techniques for LCD displays. Chapter 8 gives an overview about portable device display technologies, illustrating the principal features of LCD video systems and the key challenges still open. Chapter 9 shows several energy efficient software techniques present in literature, while Chapter 10 illustrates in details our method for saving significant power in an LCD panel. Finally, conclusions are drawn, reporting the main research contributions that have been discussed throughout this dissertation.
Resumo:
Traditional software engineering approaches and metaphors fall short when applied to areas of growing relevance such as electronic commerce, enterprise resource planning, and mobile computing: such areas, in fact, generally call for open architectures that may evolve dynamically over time so as to accommodate new components and meet new requirements. This is probably one of the main reasons that the agent metaphor and the agent-oriented paradigm are gaining momentum in these areas. This thesis deals with the engineering of complex software systems in terms of the agent paradigm. This paradigm is based on the notions of agent and systems of interacting agents as fundamental abstractions for designing, developing and managing at runtime typically distributed software systems. However, today the engineer often works with technologies that do not support the abstractions used in the design of the systems. For this reason the research on methodologies becomes the basic point in the scientific activity. Currently most agent-oriented methodologies are supported by small teams of academic researchers, and as a result, most of them are in an early stage and still in the first context of mostly \academic" approaches for agent-oriented systems development. Moreover, such methodologies are not well documented and very often defined and presented only by focusing on specific aspects of the methodology. The role played by meta- models becomes fundamental for comparing and evaluating the methodologies. In fact a meta-model specifies the concepts, rules and relationships used to define methodologies. Although it is possible to describe a methodology without an explicit meta-model, formalising the underpinning ideas of the methodology in question is valuable when checking its consistency or planning extensions or modifications. A good meta-model must address all the different aspects of a methodology, i.e. the process to be followed, the work products to be generated and those responsible for making all this happen. In turn, specifying the work products that must be developed implies dening the basic modelling building blocks from which they are built. As a building block, the agent abstraction alone is not enough to fully model all the aspects related to multi-agent systems in a natural way. In particular, different perspectives exist on the role that environment plays within agent systems: however, it is clear at least that all non-agent elements of a multi-agent system are typically considered to be part of the multi-agent system environment. The key role of environment as a first-class abstraction in the engineering of multi-agent system is today generally acknowledged in the multi-agent system community, so environment should be explicitly accounted for in the engineering of multi-agent system, working as a new design dimension for agent-oriented methodologies. At least two main ingredients shape the environment: environment abstractions - entities of the environment encapsulating some functions -, and topology abstractions - entities of environment that represent the (either logical or physical) spatial structure. In addition, the engineering of non-trivial multi-agent systems requires principles and mechanisms for supporting the management of the system representation complexity. These principles lead to the adoption of a multi-layered description, which could be used by designers to provide different levels of abstraction over multi-agent systems. The research in these fields has lead to the formulation of a new version of the SODA methodology where environment abstractions and layering principles are exploited for en- gineering multi-agent systems.
Resumo:
Actual trends in software development are pushing the need to face a multiplicity of diverse activities and interaction styles characterizing complex and distributed application domains, in such a way that the resulting dynamics exhibits some grade of order, i.e. in terms of evolution of the system and desired equilibrium. Autonomous agents and Multiagent Systems are argued in literature as one of the most immediate approaches for describing such a kind of challenges. Actually, agent research seems to converge towards the definition of renewed abstraction tools aimed at better capturing the new demands of open systems. Besides agents, which are assumed as autonomous entities purposing a series of design objectives, Multiagent Systems account new notions as first-class entities, aimed, above all, at modeling institutional/organizational entities, placed for normative regulation, interaction and teamwork management, as well as environmental entities, placed as resources to further support and regulate agent work. The starting point of this thesis is recognizing that both organizations and environments can be rooted in a unifying perspective. Whereas recent research in agent systems seems to account a set of diverse approaches to specifically face with at least one aspect within the above mentioned, this work aims at proposing a unifying approach where both agents and their organizations can be straightforwardly situated in properly designed working environments. In this line, this work pursues reconciliation of environments with sociality, social interaction with environment based interaction, environmental resources with organizational functionalities with the aim to smoothly integrate the various aspects of complex and situated organizations in a coherent programming approach. Rooted in Agents and Artifacts (A&A) meta-model, which has been recently introduced both in the context of agent oriented software engineering and programming, the thesis promotes the notion of Embodied Organizations, characterized by computational infrastructures attaining a seamless integration between agents, organizations and environmental entities.
Resumo:
Cost, performance and availability considerations are forcing even the most conservative high-integrity embedded real-time systems industry to migrate from simple hardware processors to ones equipped with caches and other acceleration features. This migration disrupts the practices and solutions that industry had developed and consolidated over the years to perform timing analysis. Industry that are confident with the efficiency/effectiveness of their verification and validation processes for old-generation processors, do not have sufficient insight on the effects of the migration to cache-equipped processors. Caches are perceived as an additional source of complexity, which has potential for shattering the guarantees of cost- and schedule-constrained qualification of their systems. The current industrial approach to timing analysis is ill-equipped to cope with the variability incurred by caches. Conversely, the application of advanced WCET analysis techniques on real-world industrial software, developed without analysability in mind, is hardly feasible. We propose a development approach aimed at minimising the cache jitters, as well as at enabling the application of advanced WCET analysis techniques to industrial systems. Our approach builds on:(i) identification of those software constructs that may impede or complicate timing analysis in industrial-scale systems; (ii) elaboration of practical means, under the model-driven engineering (MDE) paradigm, to enforce the automated generation of software that is analyzable by construction; (iii) implementation of a layout optimisation method to remove cache jitters stemming from the software layout in memory, with the intent of facilitating incremental software development, which is of high strategic interest to industry. The integration of those constituents in a structured approach to timing analysis achieves two interesting properties: the resulting software is analysable from the earliest releases onwards - as opposed to becoming so only when the system is final - and more easily amenable to advanced timing analysis by construction, regardless of the system scale and complexity.
Resumo:
Many schools do not begin to introduce college students to software engineering until they have had at least one semester of programming. Since software engineering is a large, complex, and abstract subject it is difficult to construct active learning exercises that build on the students’ elementary knowledge of programming and still teach basic software engineering principles. It is also the case that beginning students typically know how to construct small programs, but they have little experience with the techniques necessary to produce reliable and long-term maintainable modules. I have addressed these two concerns by defining a local standard (Montana Tech Method (MTM) Software Development Standard for Small Modules Template) that step-by-step directs students toward the construction of highly reliable small modules using well known, best-practices software engineering techniques. “Small module” is here defined as a coherent development task that can be unit tested, and can be car ried out by a single (or a pair of) software engineer(s) in at most a few weeks. The standard describes the process to be used and also provides a template for the top-level documentation. The instructional module’s sequence of mini-lectures and exercises associated with the use of this (and other) local standards are used throughout the course, which perforce covers more abstract software engineering material using traditional reading and writing assignments. The sequence of mini-lectures and hands-on assignments (many of which are done in small groups) constitutes an instructional module that can be used in any similar software engineering course.
Resumo:
Continuous advancements in technology have led to increasingly comprehensive and distributed product development processes while in pursuit of improved products at reduced costs. Information associated with these products is ever changing, and structured frameworks have become integral to managing such fluid information. Ontologies and the Semantic Web have emerged as key alternatives for capturing product knowledge in both a human-readable and computable manner. The primary and conclusive focus of this research is to characterize relationships formed within methodically developed distributed design knowledge frameworks to ultimately provide a pervasive real-time awareness in distributed design processes. Utilizing formal logics in the form of the Semantic Web’s OWL and SWRL, causal relationships are expressed to guide and facilitate knowledge acquisition as well as identify contradictions between knowledge in a knowledge base. To improve the efficiency during both the development and operational phases of these “intelligent” frameworks, a semantic relatedness algorithm is designed specifically to identify and rank underlying relationships within product development processes. After reviewing several semantic relatedness measures, three techniques, including a novel meronomic technique, are combined to create AIERO, the Algorithm for Identifying Engineering Relationships in Ontologies. In determining its applicability and accuracy, AIERO was applied to three separate, independently developed ontologies. The results indicate AIERO is capable of consistently returning relatedness values one would intuitively expect. To assess the effectiveness of AIERO in exposing underlying causal relationships across product development platforms, a case study involving the development of an industry-inspired printed circuit board (PCB) is presented. After instantiating the PCB knowledge base and developing an initial set of rules, FIDOE, the Framework for Intelligent Distributed Ontologies in Engineering, was employed to identify additional causal relationships through extensional relatedness measurements. In a conclusive PCB redesign, the resulting “intelligent” framework demonstrates its ability to pass values between instances, identify inconsistencies amongst instantiated knowledge, and identify conflicting values within product development frameworks. The results highlight how the introduced semantic methods can enhance the current knowledge acquisition, knowledge management, and knowledge validation capabilities of traditional knowledge bases.
Resumo:
Gaining economic benefits from substantially lower labor costs has been reported as a major reason for offshoring labor-intensive information systems services to low-wage countries. However, if wage differences are so high, why is there such a high level of variation in the economic success between offshored IS projects? This study argues that offshore outsourcing involves a number of extra costs for the ^his paper was recommended for acceptance by Associate Guest Editor Erran Carmel. client organization that account for the economic failure of offshore projects. The objective is to disaggregate these extra costs into their constituent parts and to explain why they differ between offshored software projects. The focus is on software development and maintenance projects that are offshored to Indian vendors. A theoretical framework is developed a priori based on transaction cost economics (TCE) and the knowledge-based view of the firm, comple mented by factors that acknowledge the specific offshore context The framework is empirically explored using a multiple case study design including six offshored software projects in a large German financial service institution. The results of our analysis indicate that the client incurs post contractual extra costs for four types of activities: (1) re quirements specification and design, (2) knowledge transfer, (3) control, and (4) coordination. In projects that require a high level of client-specific knowledge about idiosyncratic business processes and software systems, these extra costs were found to be substantially higher than in projects where more general knowledge was needed. Notably, these costs most often arose independently from the threat of oppor tunistic behavior, challenging the predominant TCE logic of market failure. Rather, the client extra costs were parti cularly high in client-specific projects because the effort for managing the consequences of the knowledge asymmetries between client and vendor was particularly high in these projects. Prior experiences of the vendor with related client projects were found to reduce the level of extra costs but could not fully offset the increase in extra costs in highly client-specific projects. Moreover, cultural and geographic distance between client and vendor as well as personnel turnover were found to increase client extra costs. Slight evidence was found, however, that the cost-increasing impact of these factors was also leveraged in projects with a high level of required client-specific knowledge (moderator effect).
Resumo:
With the availability of lower cost but highly skilled software development labor from offshore regions, entrepreneurs from developed countries who do not have software development experience can utilize this workforce to develop innovative software products. In order to succeed in offshored innovation projects, the often extreme knowledge boundaries between the onsite entrepreneur and the offshore software development team have to be overcome. Prior research has proposed that boundary objects are critical for bridging such boundaries – if they are appropriately used. Our longitudinal, revelatory case study of a software innovation project is one of the first to explore the role of the software prototype as a digital boundary object. Our study empirically unpacks five use practices that transform the software prototype into a boundary object such that knowledge boundaries are bridged. Our findings provide new theoretical insights for literature on software innovation and boundary objects, and have implications for practice.
Resumo:
In this study, the work and life of Indian IT engineers in Japan engaged in software development were examined through a questionnaire survey. Findings were further supported by comparative analyses with Chinese and Korean software engineers. While Indian IT software engineers appeared rather satisfied with their life overall in Japan, they seemed rather dissatisfied with their work conditions including such things as fringe benefits, the working-time management of the company, levels of salary and bonuses, and promotion opportunities. It was made clear that profiles and perceptions of Indian engineers and those of Chinese and Koreans in Japan were different.
Resumo:
Software Product Line Engineering (SPLE) is becoming widely used due to the improvement it means when developing software products of the same family. However, SPLE demands long-term investment on a product-line platform that might not be profitable due to rapid changing business settings. Since Agile Software Development (ASD) approaches are being successfully applied in volatile markets, several companies have suggested the idea of integrating SPLE and ASD when a family product has to be developed. Agile Product Line Engineering (APLE) advocates the integration of SPLE and ASD to address their lacks when they are individually applied to software development. A previous literature re-view of experiences and practices on APLE revealed important challenges about how to fully put APLE into practice. Our contribution address several of these challenges by tailoring the agile method Scrum by means of three concepts that we have defined: plastic partial components, working PL-architectures, and reactive reuse.
Resumo:
El Análisis de Consumo de Recursos o Análisis de Coste trata de aproximar el coste de ejecutar un programa como una función dependiente de sus datos de entrada. A pesar de que existen trabajos previos a esta tesis doctoral que desarrollan potentes marcos para el análisis de coste de programas orientados a objetos, algunos aspectos avanzados, como la eficiencia, la precisión y la fiabilidad de los resultados, todavía deben ser estudiados en profundidad. Esta tesis aborda estos aspectos desde cuatro perspectivas diferentes: (1) Las estructuras de datos compartidas en la memoria del programa son una pesadilla para el análisis estático de programas. Trabajos recientes proponen una serie de condiciones de localidad para poder mantener de forma consistente información sobre los atributos de los objetos almacenados en memoria compartida, reemplazando éstos por variables locales no almacenadas en la memoria compartida. En esta tesis presentamos dos extensiones a estos trabajos: la primera es considerar, no sólo los accesos a los atributos, sino también los accesos a los elementos almacenados en arrays; la segunda se centra en los casos en los que las condiciones de localidad no se cumplen de forma incondicional, para lo cual, proponemos una técnica para encontrar las precondiciones necesarias para garantizar la consistencia de la información acerca de los datos almacenados en memoria. (2) El objetivo del análisis incremental es, dado un programa, los resultados de su análisis y una serie de cambios sobre el programa, obtener los nuevos resultados del análisis de la forma más eficiente posible, evitando reanalizar aquellos fragmentos de código que no se hayan visto afectados por los cambios. Los analizadores actuales todavía leen y analizan el programa completo de forma no incremental. Esta tesis presenta un análisis de coste incremental, que, dado un cambio en el programa, reconstruye la información sobre el coste del programa de todos los métodos afectados por el cambio de forma incremental. Para esto, proponemos (i) un algoritmo multi-dominio y de punto fijo que puede ser utilizado en todos los análisis globales necesarios para inferir el coste, y (ii) una novedosa forma de almacenar las expresiones de coste que nos permite reconstruir de forma incremental únicamente las funciones de coste de aquellos componentes afectados por el cambio. (3) Las garantías de coste obtenidas de forma automática por herramientas de análisis estático no son consideradas totalmente fiables salvo que la implementación de la herramienta o los resultados obtenidos sean verificados formalmente. Llevar a cabo el análisis de estas herramientas es una tarea titánica, ya que se trata de herramientas de gran tamaño y complejidad. En esta tesis nos centramos en el desarrollo de un marco formal para la verificación de las garantías de coste obtenidas por los analizadores en lugar de analizar las herramientas. Hemos implementado esta idea mediante la herramienta COSTA, un analizador de coste para programas Java y KeY, una herramienta de verificación de programas Java. De esta forma, COSTA genera las garantías de coste, mientras que KeY prueba la validez formal de los resultados obtenidos, generando de esta forma garantías de coste verificadas. (4) Hoy en día la concurrencia y los programas distribuidos son clave en el desarrollo de software. Los objetos concurrentes son un modelo de concurrencia asentado para el desarrollo de sistemas concurrentes. En este modelo, los objetos son las unidades de concurrencia y se comunican entre ellos mediante llamadas asíncronas a sus métodos. La distribución de las tareas sugiere que el análisis de coste debe inferir el coste de los diferentes componentes distribuidos por separado. En esta tesis proponemos un análisis de coste sensible a objetos que, utilizando los resultados obtenidos mediante un análisis de apunta-a, mantiene el coste de los diferentes componentes de forma independiente. Abstract Resource Analysis (a.k.a. Cost Analysis) tries to approximate the cost of executing programs as functions on their input data sizes and without actually having to execute the programs. While a powerful resource analysis framework on object-oriented programs existed before this thesis, advanced aspects to improve the efficiency, the accuracy and the reliability of the results of the analysis still need to be further investigated. This thesis tackles this need from the following four different perspectives. (1) Shared mutable data structures are the bane of formal reasoning and static analysis. Analyses which keep track of heap-allocated data are referred to as heap-sensitive. Recent work proposes locality conditions for soundly tracking field accesses by means of ghost non-heap allocated variables. In this thesis we present two extensions to this approach: the first extension is to consider arrays accesses (in addition to object fields), while the second extension focuses on handling cases for which the locality conditions cannot be proven unconditionally by finding aliasing preconditions under which tracking such heap locations is feasible. (2) The aim of incremental analysis is, given a program, its analysis results and a series of changes to the program, to obtain the new analysis results as efficiently as possible and, ideally, without having to (re-)analyze fragments of code that are not affected by the changes. During software development, programs are permanently modified but most analyzers still read and analyze the entire program at once in a non-incremental way. This thesis presents an incremental resource usage analysis which, after a change in the program is made, is able to reconstruct the upper-bounds of all affected methods in an incremental way. To this purpose, we propose (i) a multi-domain incremental fixed-point algorithm which can be used by all global analyses required to infer the cost, and (ii) a novel form of cost summaries that allows us to incrementally reconstruct only those components of cost functions affected by the change. (3) Resource guarantees that are automatically inferred by static analysis tools are generally not considered completely trustworthy, unless the tool implementation or the results are formally verified. Performing full-blown verification of such tools is a daunting task, since they are large and complex. In this thesis we focus on the development of a formal framework for the verification of the resource guarantees obtained by the analyzers, instead of verifying the tools. We have implemented this idea using COSTA, a state-of-the-art cost analyzer for Java programs and KeY, a state-of-the-art verification tool for Java source code. COSTA is able to derive upper-bounds of Java programs while KeY proves the validity of these bounds and provides a certificate. The main contribution of our work is to show that the proposed tools cooperation can be used for automatically producing verified resource guarantees. (4) Distribution and concurrency are today mainstream. Concurrent objects form a well established model for distributed concurrent systems. In this model, objects are the concurrency units that communicate via asynchronous method calls. Distribution suggests that analysis must infer the cost of the diverse distributed components separately. In this thesis we propose a novel object-sensitive cost analysis which, by using the results gathered by a points-to analysis, can keep the cost of the diverse distributed components separate.
Resumo:
Software testing is a key aspect of software reliability and quality assurance in a context where software development constantly has to overcome mammoth challenges in a continuously changing environment. One of the characteristics of software testing is that it has a large intellectual capital component and can thus benefit from the use of the experience gained from past projects. Software testing can, then, potentially benefit from solutions provided by the knowledge management discipline. There are in fact a number of proposals concerning effective knowledge management related to several software engineering processes. Objective: We defend the use of a lesson learned system for software testing. The reason is that such a system is an effective knowledge management resource enabling testers and managers to take advantage of the experience locked away in the brains of the testers. To do this, the experience has to be gathered, disseminated and reused. Method: After analyzing the proposals for managing software testing experience, significant weaknesses have been detected in the current systems of this type. The architectural model proposed here for lesson learned systems is designed to try to avoid these weaknesses. This model (i) defines the structure of the software testing lessons learned; (ii) sets up procedures for lesson learned management; and (iii) supports the design of software tools to manage the lessons learned. Results: A different approach, based on the management of the lessons learned that software testing engineers gather from everyday experience, with two basic goals: usefulness and applicability. Conclusion: The architectural model proposed here lays the groundwork to overcome the obstacles to sharing and reusing experience gained in the software testing and test management. As such, it provides guidance for developing software testing lesson learned systems.
Resumo:
Tanto los robots autónomos móviles como los robots móviles remotamente operados se utilizan con éxito actualmente en un gran número de ámbitos, algunos de los cuales son tan dispares como la limpieza en el hogar, movimiento de productos en almacenes o la exploración espacial. Sin embargo, es difícil garantizar la ausencia de defectos en los programas que controlan dichos dispositivos, al igual que ocurre en otros sectores informáticos. Existen diferentes alternativas para medir la calidad de un sistema en el desempeño de las funciones para las que fue diseñado, siendo una de ellas la fiabilidad. En el caso de la mayoría de los sistemas físicos se detecta una degradación en la fiabilidad a medida que el sistema envejece. Esto es debido generalmente a efectos de desgaste. En el caso de los sistemas software esto no suele ocurrir, ya que los defectos que existen en ellos generalmente no han sido adquiridos con el paso del tiempo, sino que han sido insertados en el proceso de desarrollo de los mismos. Si dentro del proceso de generación de un sistema software se focaliza la atención en la etapa de codificación, podría plantearse un estudio que tratara de determinar la fiabilidad de distintos algoritmos, válidos para desempeñar el mismo cometido, según los posibles defectos que pudieran introducir los programadores. Este estudio básico podría tener diferentes aplicaciones, como por ejemplo elegir el algoritmo menos sensible a los defectos, para el desarrollo de un sistema crítico o establecer procedimientos de verificación y validación, más exigentes, si existe la necesidad de utilizar un algoritmo que tenga una alta sensibilidad a los defectos. En el presente trabajo de investigación se ha estudiado la influencia que tienen determinados tipos de defectos software en la fiabilidad de tres controladores de velocidad multivariable (PID, Fuzzy y LQR) al actuar en un robot móvil específico. La hipótesis planteada es que los controladores estudiados ofrecen distinta fiabilidad al verse afectados por similares patrones de defectos, lo cual ha sido confirmado por los resultados obtenidos. Desde el punto de vista de la planificación experimental, en primer lugar se realizaron los ensayos necesarios para determinar si los controladores de una misma familia (PID, Fuzzy o LQR) ofrecían una fiabilidad similar, bajo las mismas condiciones experimentales. Una vez confirmado este extremo, se eligió de forma aleatoria un representante de clase de cada familia de controladores, para efectuar una batería de pruebas más exhaustiva, con el objeto de obtener datos que permitieran comparar de una forma más completa la fiabilidad de los controladores bajo estudio. Ante la imposibilidad de realizar un elevado número de pruebas con un robot real, así como para evitar daños en un dispositivo que generalmente tiene un coste significativo, ha sido necesario construir un simulador multicomputador del robot. Dicho simulador ha sido utilizado tanto en las actividades de obtención de controladores bien ajustados, como en la realización de los diferentes ensayos necesarios para el experimento de fiabilidad. ABSTRACT Autonomous mobile robots and remotely operated robots are used successfully in very diverse scenarios, such as home cleaning, movement of goods in warehouses or space exploration. However, it is difficult to ensure the absence of defects in programs controlling these devices, as it happens in most computer sectors. There exist different quality measures of a system when performing the functions for which it was designed, among them, reliability. For most physical systems, a degradation occurs as the system ages. This is generally due to the wear effect. In software systems, this does not usually happen, and defects often come from system development and not from use. Let us assume that we focus on the coding stage in the software development pro¬cess. We could consider a study to find out the reliability of different and equally valid algorithms, taking into account any flaws that programmers may introduce. This basic study may have several applications, such as choosing the algorithm less sensitive to pro¬gramming defects for the development of a critical system. We could also establish more demanding procedures for verification and validation if we need an algorithm with high sensitivity to programming defects. In this thesis, we studied the influence of certain types of software defects in the reliability of three multivariable speed controllers (PID, Fuzzy and LQR) designed to work in a specific mobile robot. The hypothesis is that similar defect patterns affect differently the reliability of controllers, and it has been confirmed by the results. From the viewpoint of experimental planning, we followed these steps. First, we conducted the necessary test to determine if controllers of the same family (PID, Fuzzy or LQR) offered a similar reliability under the same experimental conditions. Then, a class representative was chosen at ramdom within each controller family to perform a more comprehensive test set, with the purpose of getting data to compare more extensively the reliability of the controllers under study. The impossibility of performing a large number of tests with a real robot and the need to prevent the damage of a device with a significant cost, lead us to construct a multicomputer robot simulator. This simulator has been used to obtain well adjusted controllers and to carry out the required reliability experiments.
Resumo:
This research is concerned with the experimental software engineering area, specifically experiment replication. Replication has traditionally been viewed as a complex task in software engineering. This is possibly due to the present immaturity of the experimental paradigm applied to software development. Researchers usually use replication packages to replicate an experiment. However, replication packages are not the solution to all the information management problems that crop up when successive replications of an experiment accumulate. This research borrows ideas from the software configuration management and software product line paradigms to support the replication process. We believe that configuration management can help to manage and administer information from one replication to another: hypotheses, designs, data analysis, etc. The software product line paradigm can help to organize and manage any changes introduced into the experiment by each replication. We expect the union of the two paradigms in replication to improve the planning, design and execution of further replications and their alignment with existing replications. Additionally, this research work will contribute a web support environment for archiving information related to different experiment replications. Additionally, it will provide flexible enough information management support for running replications with different numbers and types of changes. Finally, it will afford massive storage of data from different replications. Experimenters working collaboratively on the same experiment must all have access to the different experiments.