961 resultados para Diphenyltin(iv)complexes Of Schiff Bases
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective: To assess the setting time (ST), flow (FL), radiopacity (RD), solubility (SB) and dimensional change following setting (DC) of different sealers (AH Plus (R), Polifil, Apexit Plus (R), Sealapex (R), Endomethasone (R) and Endofill (R)) according to American National Standards Institute/American Dental Association (ANSI/ADA) Specification 57. Material and methods: Five samples of each material were used for each test. For ST, cast rings were filled with sealers and tested with a Gillmore needle. For FL, the sealer was placed on a glass plate. After 180 s, another plate with 20 g and a load of 100 g were applied on the material, and the diameters of the discs formed were measured. In RD, circular molds were filled with the sealers, radiographed and analyzed using Digora software. For SB, circular molds were filled with the sealers, a nylon thread was placed inside the material and another glass plate was positioned on the set, pressed and stored at 37 degrees C. Samples were weighed, placed in water, dried and reweighed. The water used for SB was analyzed by atomic absorption spectrometry. For DC, circular molds were filled with the sealers, covered by glass plates and stored at 37 degrees C. Samples were measured and stored in water for 30 days. After this period, they were dryed and measured again. Results: Regarding ST, AH Plus (R), Apexit (R) and Endofil (R) sealers are in accordance with ANSI/ADA standards. Endomethasone's manufacturer did not mention the ST; Polifil is an experimental sealer and Sealapex (R) did not set. Considering RD, SB and DC, all sealers were in accordance with ANSI/ADA. The spectrometric analysis showed that a significant amount of K+ and Zn2(+) ions was released from Apexit Plus (R) and Endofill (R), respectively. Conclusion: Except for DC, all other physicochemical properties of the tested sealers conformed to ANSI/ADA requirements.
Resumo:
The mixed ruthenium(II) complexes trans-[RuCl(2)(PPh(3))(2)(bipy)] (1), trans-[RuCl(2)(PPh(3))(2)(Me(2)bipy)](2), cis-[RuCl(2)(dcype)(bipy)](3), cis-[RuCl(2)(dcype)(Me(2)bipy)](4) (PPh(3) = triphenylphosphine, dcype = 1,2-bis(dicyclohexylphosphino)ethane, bipy = 2,2'-bipyridine, Me(2)bipy = 4,4'-dimethyl-2,2'-bipyridine) were used as precursors to synthesize the associated vinylidene complexes. The complexes [RuCl(=C=CHPh)(PPh(3))(2)(bipy)]PF(6) (5), [RuCl(=C=CHPh)(PPh(3))(2)(Me(2)bipy)]PF(6) (6), [RuCl(=C=CHPh)(dcype)(bipy)]PF(6) (7), [RuCl(=C=CHPh)(dcype)(bipy)]PF(6) (8) were characterized and their spectral, electrochemical, photochemical and photophysical properties were examined. The emission assigned to the pi-pi* excited state from the vinylidene ligand is irradiation wavelength (340, 400, 430 nm) and solvent (CH(2)Cl(2), CH(3)CN, EtOH/MeOH) dependent. The cyclic voltammograms of (6) and (7) show a reversible metal oxidation peak and two successive ligand reductions in the +1.5-(-0.64) V range. The reduction of the vinylidene leads to the formation of the acetylide complex, but due the hydrogen abstraction the process is irreversible. The studies described here suggest that for practical applications such as functional materials, nonlinear optics, building blocks and supramolecular photochemistry. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Dapsone (DAP) is a synthetic sulfone drug with bacteriostatic activity, mainly against Mycobacterium leprae. In this study we have investigated the interactions of DAP with cyclodextrins, 2-hydroxypropyl-beta-cyclodextrin (HP beta CD) and beta-cyclodextrin (beta CD), in the presence and absence of water-soluble polymers, in order to improve its solubility and bioavailability. Solid systems DAP/HP beta CD and DAP/beta CD, in the presence or absence of polyvinylpyrrolidone (PVP K30) or hydroxypropyl methylcellulose (HPMC), were prepared. The binary and ternary systems were evaluated and characterized by SEM, DSC, XRD and NMR analysis as well as phase solubility assays, in order to investigate the interactions between DAP and the excipients in aqueous solution. This study revealed that inclusion complexes of DAP and cyclodextrins (HP beta CD and beta CD) can be produced in order to improve DAP solubility and bioavailability in the presence or absence of polymers (PVP K30 and HPMC). The more stable inclusion complex was obtained with HP beta CD, and consequently HP beta CD was more efficient in improving DAP solubility than beta CD, and the addition of polymers had no influence on DAP solubility or on the stability of the DAP/CDs complexes.
Resumo:
A systematic characterization of the composition and structure of the bacterial cell-surface proteome and its complexes can provide an invaluable tool for its comprehensive understanding. The knowledge of protein complexes composition and structure could offer new, more effective targets for a more specific and consequently effective immune response against a complex instead of a single protein. Large-scale protein-protein interaction screens are the first step towards the identification of complexes and their attribution to specific pathways. Currently, several methods exist for identifying protein interactions and protein microarrays provide the most appealing alternative to existing techniques for a high throughput screening of protein-protein interactions in vitro under reasonably straightforward conditions. In this study approximately 100 proteins of Group A Streptococcus (GAS) predicted to be secreted or surface exposed by genomic and proteomic approaches were purified in a His-tagged form and used to generate protein microarrays on nitrocellulose-coated slides. To identify protein-protein interactions each purified protein was then labeled with biotin, hybridized to the microarray and interactions were detected with Cy3-labelled streptavidin. Only reciprocal interactions, i. e. binding of the same two interactors irrespective of which of the two partners is in solid-phase or in solution, were taken as bona fide protein-protein interactions. Using this approach, we have identified 20 interactors of one of the potent toxins secreted by GAS and known as superantigens. Several of these interactors belong to the molecular chaperone or protein folding catalyst families and presumably are involved in the secretion and folding of the superantigen. In addition, a very interesting interaction was found between the superantigen and the substrate binding subunit of a well characterized ABC transporter. This finding opens a new perspective on the current understanding of how superantigens are modified by the bacterial cell in order to become major players in causing disease.
Resumo:
Complexes of polyelectrolytes with defined charge distance and different dendrimer counterions Magdalena Chelmecka Max Planck Institute for Polymer Research; Ackermannweg 10; D-55128 Mainz ; Tel.: (+49) 06131- 379 – 226 A study of complexes in solution is of interest to investigate whether the formation of well-defined assemblies like in classical surfactant systems is possible. Aim of this thesis is to investigate the electrostatic self-assembly of linear polycations of varying charge distance with “large” counterions of varying architecture. We especially investigate the morphology of objects formed, but also their stability under salt free condition and after low molecular mass salt addition. As polycations, Poly(dialkylimino)-alkylene salts (Ionenes) I65MeBr and I25MeBr were chosen. Ionenes are synthesized via Menschutkin reaction and characterized by standard methods. Counterions are Polyamidoamine (PAMAM) dendrimers of generations G2.5, G5.5, G7.5 with -COONa surface groups and shape-persistent, Polyphenylene dendrimers of generation G1 with surface -COOH groups. A complex interplay of interactions is expected to direct the self assembly via electrostatic interaction, geometric factors, hydrophobic interaction or hydrogen bonds. Methods used for the investigation of complexes are: UV-spectroscopy, pH-metric techniques, dynamic and static light scattering, small angle neutron scattering, potential measurements and potentiometric titration. Under certain conditions, (i.e. charge ratio of compounds, charge density of ionene and dendrimer also concentration of sample) polyelectrolyte systems composed of ionenes and dendrimers build complexes in solution. System compounds are typical polyelectrolytes, but structures which they build behave not usual for typical polyelectrolytes. In a one diffusion mode regime aggregates of about 100 nm hydrodynamic radius have been found. Such aggregates are core-shell or anisotropic core shell structures in the case of ionenes/PAMAM dendrimers complexes. These complexes are stable even at high ionic strength. In case of ionenes with poly(phenylene) dendrimers, hard sphere-like objects or spherical objects with hairy-like surface have been found in a one diffusion mode regime. Their stability at high ionic strength is lower. For the ionenes/poly(phenylene) dendrimers systems one transition point has been found from one to two diffusion processes, towards increasing ionene concentration, i.e. for the samples with fixed dendrimer concentration towards increasing ionic strength. For the diffusion profile of ionene/PAMAM dendrimers in most cases two transition regimes are observed. One at very low ionene concentration, the second one at high ionene concentrations, which again means for the samples with fixed dendrimer concentration, also at higher ionic strength. Both two mode regimes are separated by the one mode regime. As was confirmed experimentally, the one diffusion mode regime is caused by the motion of well defined assemblies. The two diffusion mode regimes are caused by the movement of different sized species in solution, large aggregates and middle-size aggregates (oligoaggregates). The location and also the number of transition points in the diffusion profiles is dependent on the ionene to dendrimer charge ratio, charge density of the compounds and concentration. No influence of the molecular mass of the ionene has been found. The aggregates are found to be charged on the surface, however this surface charge does not significantly influence the diffusion properties of the system.
Resumo:
The research performed in the framework of this Master Thesis has been directly inspired by the recent work of an organometallic research group led by Professor Maria Cristina Cassani on a topic related to the structures, dynamics and catalytic activity of N-heterocyclic carbene-amide rhodium(I) complexes1. A series of [BocNHCH2CH2ImR]X (R = Me, X = I, 1a’; R = Bz, X = Br, 1b’; R = trityl, X = Cl, 1c’) amide-functionalized imidazolium salts bearing increasingly bulky N-alkyl substituents were synthetized and characterized. Subsequently, these organic precursors were employed in the synthesis of silver(I) complexes as intermediate compounds on a way to rhodium(I) complexes [Rh(NBD)X(NHC)] (NHC = 1-(2-NHBoc-ethyl)-3-R-imidazolin-2-ylidene; X = Cl, R = Me (3a’), R = Bz (3b’), R = trityl (3c’); X = I, R = Me (4a’)). VT NMR studies of these complexes revealed a restricted rotation barriers about the metal-carbene bond. However, while the rotation barriers calculated for the complexes in which R = Me, Bz (3a’,b’ and 4a) matched the experimental values, this was not true in the trityl case 3c’, where the experimental value was very similar to that obtained for compound 3b’ and much smaller with respect to the calculated one. In addition, the energy barrier derived for 3c’ from line shape simulation showed a strong dependence on the temperature, while the barriers measured for 3a’,b’ did not show this effect. In view of these results and in order to establish the reasons for the previously found inconsistency between calculated and experimental thermodynamic data, the first objective of this master thesis was the preparation of a series of rhodium(I) complexes [Rh(NBD)X(NHC)] (NHC = 1-benzyl-3-R-imidazolin-2-ylidene; X = Cl, R = Me, Bz, trityl, tBu), containing the benzyl substituent as a chiral probe, followed by full characterization. The second objective of this work was to investigate the catalytic activity of the new rhodium compounds in the hydrosilylation of terminal alkynes for comparison purposes with the reported complexes. Another purpose of this work was to employ the prepared N-heterocyclic ligands in the synthesis of iron(II)-NHC complexes.
Resumo:
A series of imidazolium salts of the type [BocNHCH2CH2ImR]X (Boc = t-Bu carbamates; Im = imidazole) (R = Me, X = I, 1a; R = Bn, X = Br, 1b; R = Trityl, X = Cl, 1c) and [BnImR’]X (R’ = Me, X = Br, 1d; R’ = Bn, X = Br, 1e; R’ = Trityl, X = Cl, 1g; R’ = tBu, X = Br, 1h) bearing increasingly bulky substituents were synthetized and characterized. Subsequently, these precursors were employed in the synthesis of silver(I)-N-heterocyclic (NHC) complexes as transmetallating reagents for the preparation of rhodium(I) complexes [RhX(NBD)(NHC)] (NHC = 1-(2-NHBoc-ethyl)-3-R-imidazolin-2-ylidene; X = Cl; R = Me, 4a; R = Bn, 4b; R = Trityl, 4c; X = I, R = Me, 5a; NHC = 1-Bn-3-R’-imidazolin-2-ylidene; X = Cl; R’ = Me, 4d, R’ = Bn, 4e, R’ = Trityl, 4g; R’ = tBu, 4h). VT NMR studies of these complexes revealed a restricted rotation barriers about the metal-carbene bond. While the rotation barriers calculated for the complexes in which R = Me, Bn (4a,b,d,e and 5a) matched the experimental values, this was not true for the complexes 4c,g, bearing a trityl group for which the values are much smaller than the calculated ones. Energy barriers for 4c,g, derived from a line shape simulation, showed a strong dependence on the temperature while for 4h the rotational energy barrier is stopped at room temperature. The catalytic activity of the new rhodium compounds was investigated in the hydrosilylation of terminal alkynes and in the addition of phenylboronic acid to benzaldehyde. The imidazolium salts 1d,e were also employed in the synthesis of new iron(II)-NHC complexes. Finally, during a six-months stay at the University of York a new ligand derived from Norharman was prepared and employed in palladium-mediated cross-coupling.
Resumo:
The aim of this master’s research thesis was the employment of an enantiopure 1,3-aminoalcohol, the 1-(α-aminobenzyl)-2-naphthol, known as Betti base, for the synthesis of some novel compounds which show a C2 symmetry. Some of these compounds, after derivatization, were used as ligands in association with transition metals to prepare some catalysts for enantioselective catalytic reactions. Some aminoalcohol (Salan-type) derivatives of these compounds were obtained upon reduction and in some cases it was possible to obtain complexes with transition metals such as Mn, Ni, Co and Cu. Furthermore a novel 6-membered analogue bisoxazoline ligand, 2,6-bis((R)-1-Phenyl-1H-naphtho[1,2-e][1,3]oxazin-3-yl)pyridine, was obtained and from it two Cu-complexes were prepared. The metal complexes were employed in some reactions to test the asymmetric induction, which was in some cases up to discrete values.
Resumo:
Recommendations stated in the TASC II guidelines for the treatment of peripheral arterial disease (PAD) regard a heterogeneous group of patients ranging from claudicants to critical limb ischaemia (CLI) patients. However, specific considerations apply to CLI patients. An important problem regarding the majority of currently available literature that reports on revascularisation strategies for PAD is that it does not focus on CLI patients specifically and studies them as a minor part of the complete cohort. Besides the lack of data on CLI patients, studies use a variety of endpoints, and even similar endpoints are often differentially defined. These considerations result in the fact that most recommendations in this guideline are not of the highest recommendation grade. In the present chapter the treatment of CLI is not based on the TASC II classification of atherosclerotic lesions, since definitions of atherosclerotic lesions are changing along the fast development of endovascular techniques, and inter-individual differences in interpretation of the TASC classification are problematic. Therefore we propose a classification merely based on vascular area of the atherosclerotic disease and the lesion length, which is less complex and eases the interpretation. Lesions and their treatment are discussed from the aorta downwards to the infrapopliteal region. For a subset of lesions, surgical revascularisation is still the gold standard, such as in extensive aorto-iliac lesions, lesions of the common femoral artery and long lesions of the superficial femoral artery (>15 cm), especially when an applicable venous conduit is present, because of higher patency and limb salvage rates, even though the risk of complications is sometimes higher than for endovascular strategies. It is however more and more accepted that an endovascular first strategy is adapted in most iliac, superficial femoral, and in some infrapopliteal lesions. The newer endovascular techniques, i.e. drug-eluting stents and balloons, show promising results especially in infrapopliteal lesions. However, most of these results should still be confirmed in large RCTs focusing on CLI patients. At some point when there is no possibility of an endovascular nor a surgical procedure, some alternative non-reconstructive options have been proposed such as lumbar sympathectomy and spinal cord stimulation. But their effectiveness is limited especially when assessing the results on objective criteria. The additional value of cell-based therapies has still to be proven from large RCTs and should therefore still be confined to a research setting. Altogether this chapter summarises the best available evidence for the treatment of CLI, which is, from multiple perspectives, completely different from claudication. The latter also stresses the importance of well-designed RCTs focusing on CLI patients reporting standardised endpoints, both clinical as well as procedural.