621 resultados para Dimensionality


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of space entered architectural history as late as 1893. Studies in art opened up the discussion, and it has been studied in various ways in architecture ever since. This article aims to instigate an additional reading to architectural history, one that is not supported by "isms" but based on space theories in the 20th century. Objectives of the article are to bring the concept of space and its changing paradigms to the attention of architectural researchers, to introduce a conceptual framework to classify and clarify theories of space, and to enrich the discussions on the 20th century architecture through theories that are beyond styles. The introduction of space in architecture will revolve around subject-object relationships, three-dimensionality and senses. Modern space will be discussed through concepts such as empathy, perception, abstraction, and geometry. A scientific approach will follow to study the concept of place through environment, event, behavior, and design methods. Finally, the research will look at contemporary approaches related to digitally supported space via concepts like reality-virtuality, mediated experience, and relationship with machines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Ineffective risk stratification can delay diagnosis of serious disease in patients with hematuria. We applied a systems biology approach to analyze clinical, demographic and biomarker measurements (n = 29) collected from 157 hematuric patients: 80 urothelial cancer (UC) and 77 controls with confounding pathologies.

Methods: On the basis of biomarkers, we conducted agglomerative hierarchical clustering to identify patient and biomarker clusters. We then explored the relationship between the patient clusters and clinical characteristics using Chi-square analyses. We determined classification errors and areas under the receiver operating curve of Random Forest Classifiers (RFC) for patient subpopulations using the biomarker clusters to reduce the dimensionality of the data.

Results: Agglomerative clustering identified five patient clusters and seven biomarker clusters. Final diagnoses categories were non-randomly distributed across the five patient clusters. In addition, two of the patient clusters were enriched with patients with ‘low cancer-risk’ characteristics. The biomarkers which contributed to the diagnostic classifiers for these two patient clusters were similar. In contrast, three of the patient clusters were significantly enriched with patients harboring ‘high cancer-risk” characteristics including proteinuria, aggressive pathological stage and grade, and malignant cytology. Patients in these three clusters included controls, that is, patients with other serious disease and patients with cancers other than UC. Biomarkers which contributed to the diagnostic classifiers for the largest ‘high cancer- risk’ cluster were different than those contributing to the classifiers for the ‘low cancer-risk’ clusters. Biomarkers which contributed to subpopulations that were split according to smoking status, gender and medication were different.

Conclusions: The systems biology approach applied in this study allowed the hematuric patients to cluster naturally on the basis of the heterogeneity within their biomarker data, into five distinct risk subpopulations. Our findings highlight an approach with the promise to unlock the potential of biomarkers. This will be especially valuable in the field of diagnostic bladder cancer where biomarkers are urgently required. Clinicians could interpret risk classification scores in the context of clinical parameters at the time of triage. This could reduce cystoscopies and enable priority diagnosis of aggressive diseases, leading to improved patient outcomes at reduced costs. © 2013 Emmert-Streib et al; licensee BioMed Central Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

yambo is an ab initio code for calculating quasiparticle energies and optical properties of electronic systems within the framework of many-body perturbation theory and time-dependent density functional theory. Quasiparticle energies are calculated within the GW approximation for the self-energy. Optical properties are evaluated either by solving the Bethe-Salpeter equation or by using the adiabatic local density approximation. yambo is a plane-wave code that, although particularly suited for calculations of periodic bulk systems, has been applied to a large variety of physical systems. yambo relies on efficient numerical techniques devised to treat systems with reduced dimensionality, or with a large number of degrees of freedom. The code has a user-friendly command-line based interface, flexible 110 procedures and is interfaced to several publicly available density functional ground-state codes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the effect of thermal fluctuations on a probe qubit interacting with a Bose–Einstein condensed (BEC) reservoir. The zero-temperature case was studied in our previous work (Haikka et al 2011 Phys. Rev. A 84 031602), where we proposed a method for probing the effects of dimensionality and scattering length of a BEC based on its behavior as an environment. In this paper, we show that the sensitivity of the probe qubit is remarkably robust against thermal noise. We give an intuitive explanation for the thermal resilience, showing that it is due to the unique choice of the probe qubit architecture of our model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasingly, it is recognized that new automated forms of analysis are required to understand the high-dimensional output obtained from atomistic simulations. Recently, we introduced a new dimensionality reduction algorithm, sketch-map, that was designed specifically to work with data from molecular dynamics trajectories. In what follows, we provide more details on how this algorithm works and on how to set its parameters. We also test it on two well-studied Lennard-Jones clusters and show that the coordinates we extract using this algorithm are extremely robust. In particular, we demonstrate that the coordinates constructed for one particular Lennard-Jones cluster can be used to describe the configurations adopted by a second, different cluster and even to tell apart different phases of bulk Lennard-Jonesium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When examining complex problems, such as the folding of proteins, coarse grained descriptions of the system drive our investigation and help us to rationalize the results. Oftentimes collective variables (CVs), derived through some chemical intuition about the process of interest, serve this purpose. Because finding these CVs is the most difficult part of any investigation, we recently developed a dimensionality reduction algorithm, sketch-map, that can be used to build a low-dimensional map of a phase space of high-dimensionality. In this paper we discuss how these machine-generated CVs can be used to accelerate the exploration of phase space and to reconstruct free-energy landscapes. To do so, we develop a formalism in which high-dimensional configurations are no longer represented by low-dimensional position vectors. Instead, for each configuration we calculate a probability distribution, which has a domain that encompasses the entirety of the low-dimensional space. To construct a biasing potential, we exploit an analogy with metadynamics and use the trajectory to adaptively construct a repulsive, history-dependent bias from the distributions that correspond to the previously visited configurations. This potential forces the system to explore more of phase space by making it desirable to adopt configurations whose distributions do not overlap with the bias. We apply this algorithm to a small model protein and succeed in reproducing the free-energy surface that we obtain from a parallel tempering calculation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A molecular dynamics-based protocol is proposed for finding and scoring protein-ligand binding poses. This protocol uses the recently developed reconnaissance metadynamics method, which employs a self-learning algorithm to construct a bias that pushes the system away from the kinetic traps where it would otherwise remain. The exploration of phase space with this algorithm is shown to be roughly six to eight times faster than unbiased molecular dynamics and is only limited by the time taken to diffuse about the surface of the protein. We apply this method to the well-studied trypsin-benzamidine system and show that we are able to refind all the poses obtained from a reference EADock blind docking calculation. These poses can be scored based on the length of time the system remains trapped in the pose. Alternatively, one can perform dimensionality reduction on the output trajectory and obtain a map of phase space that can be used in more expensive free-energy calculations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new scheme, sketch-map, for obtaining a low-dimensional representation of the region of phase space explored during an enhanced dynamics simulation is proposed. We show evidence, from an examination of the distribution of pairwise distances between frames, that some features of the free-energy surface are inherently high-dimensional. This makes dimensionality reduction problematic because the data does not satisfy the assumptions made in conventional manifold learning algorithms We therefore propose that when dimensionality reduction is performed on trajectory data one should think of the resultant embedding as a quickly sketched set of directions rather than a road map. In other words, the embedding tells one about the connectivity between states but does not provide the vectors that correspond to the slow degrees of freedom. This realization informs the development of sketch-map, which endeavors to reproduce the proximity information from the high-dimensionality description in a space of lower dimensionality even when a faithful embedding is not possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel cost-effective and low-latency wormhole router for packet-switched NoC designs, tailored for FPGA, is presented. This has been designed to be scalable at system level to fully exploit the characteristics and constraints of FPGA based systems, rather than custom ASIC technology. A key feature is that it achieves a low packet propagation latency of only two cycles per hop including both router pipeline delay and link traversal delay - a significant enhancement over existing FPGA designs - whilst being very competitive in terms of performance and hardware complexity. It can also be configured in various network topologies including 1-D, 2-D, and 3-D. Detailed design-space exploration has been carried for a range of scaling parameters, with the results of various design trade-offs being presented and discussed. By taking advantage of abundant buildin reconfigurable logic and routing resources, we have been able to create a new scalable on-chip FPGA based router that exhibits high dimensionality and connectivity. The architecture proposed can be easily migrated across many FPGA families to provide flexible, robust and cost-effective NoC solutions suitable for the implementation of high-performance FPGA computing systems. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current conceptual models of reciprocal interactions linking soil structure, plants and arbuscular mycorrhizal fungi emphasise positive feedbacks among the components of the system. However, dynamical systems with high dimensionality and several positive feedbacks (i.e. mutualism) are prone to instability. Further, organisms such as arbuscular mycorrhizal fungi (AMF) are obligate biotrophs of plants and are considered major biological agents in soil aggregate stabilization. With these considerations in mind, we developed dynamical models of soil ecosystems that reflect the main features of current conceptual models and empirical data, especially positive feedbacks and linear interactions among plants, AMF and the component of soil structure dependent on aggregates. We found that systems become increasingly unstable the more positive effects with Type I functional response (i.e., the growth rate of a mutualist is modified by the density of its partner through linear proportionality) are added to the model, to the point that increasing the realism of models by adding linear effects produces the most unstable systems. The present theoretical analysis thus offers a framework for modelling and suggests new directions for experimental studies on the interrelationship between soil structure, plants and AMF. Non-linearity in functional responses, spatial and temporal heterogeneity, and indirect effects can be invoked on a theoretical basis and experimentally tested in laboratory and field experiments in order to account for and buffer the local instability of the simplest of current scenarios. This first model presented here may generate interest in more explicitly representing the role of biota in soil physical structure, a phenomenon that is typically viewed in a more process- and management-focused context. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blind steganalysis of JPEG images is addressed by modeling the correlations among the DCT coefficients using K -variate (K = 2) p.d.f. estimates (p.d.f.s) constructed by means of Markov random field (MRF) cliques. The reasoning of using high variate p.d.f.s together with MRF cliques for image steganalysis is explained via a classical detection problem. Although our approach has many improvements over the current state-of-the-art, it suffers from the high dimensionality and the sparseness of the high variate p.d.f.s. The dimensionality problem as well as the sparseness problem are solved heuristically by means of dimensionality reduction and feature selection algorithms. The detection accuracy of the proposed method(s) is evaluated over Memon's (30.000 images) and Goljan's (1912 images) image sets. It is shown that practically applicable steganalysis systems are possible with a suitable dimensionality reduction technique and these systems can provide, in general, improved detection accuracy over the current state-of-the-art. Experimental results also justify this assertion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents generalized Laplacian eigenmaps, a novel dimensionality reduction approach designed to address stylistic variations in time series. It generates compact and coherent continuous spaces whose geometry is data-driven. This paper also introduces graph-based particle filter, a novel methodology conceived for efficient tracking in low dimensional space derived from a spectral dimensionality reduction method. Its strengths are a propagation scheme, which facilitates the prediction in time and style, and a noise model coherent with the manifold, which prevents divergence, and increases robustness. Experiments show that a combination of both techniques achieves state-of-the-art performance for human pose tracking in underconstrained scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enhancing sampling and analyzing simulations are central issues in molecular simulation. Recently, we introduced PLUMED, an open-source plug-in that provides some of the most popular molecular dynamics (MD) codes with implementations of a variety of different enhanced sampling algorithms and collective variables (CVs). The rapid changes in this field, in particular new directions in enhanced sampling and dimensionality reduction together with new hardware, require a code that is more flexible and more efficient. We therefore present PLUMED 2 here a,complete rewrite of the code in an object-oriented programming language (C++). This new version introduces greater flexibility and greater modularity, which both extends its core capabilities and makes it far easier to add new methods and CVs. It also has a simpler interface with the MD engines and provides a single software library containing both tools and core facilities. Ultimately, the new code better serves the ever-growing community of users and contributors in coping with the new challenges arising in the field.

Program summary

Program title: PLUMED 2

Catalogue identifier: AEEE_v2_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEEE_v2_0.html

Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland

Licensing provisions: Yes

No. of lines in distributed program, including test data, etc.: 700646

No. of bytes in distributed program, including test data, etc.: 6618136

Distribution format: tar.gz

Programming language: ANSI-C++.

Computer: Any computer capable of running an executable produced by a C++ compiler.

Operating system: Linux operating system, Unix OSs.

Has the code been vectorized or parallelized?: Yes, parallelized using MPI.

RAM: Depends on the number of atoms, the method chosen and the collective variables used.

Classification: 3, 7.7, 23. Catalogue identifier of previous version: AEEE_v1_0.

Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 1961.

External routines: GNU libmatheval, Lapack, Bias, MPI. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a new method for estimating the covariance matrix of a multivariate time series of nancial returns. The method is based on estimating sample covariances from overlapping windows of observations which are then appropriately weighted to obtain the nal covariance estimate. We extend the idea of (model) covariance averaging o ered in the covariance shrinkage approach by means of greater ease of use, exibility and robustness in averaging information over different data segments. The suggested approach does not su er from the curse of dimensionality and can be used without problems of either approximation or any demand for numerical optimization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper a 3D human pose tracking framework is presented. A new dimensionality reduction method (Hierarchical Temporal Laplacian Eigenmaps) is introduced to represent activities in hierarchies of low dimensional spaces. Such a hierarchy provides increasing independence between limbs, allowing higher flexibility and adaptability that result in improved accuracy. Moreover, a novel deterministic optimisation method (Hierarchical Manifold Search) is applied to estimate efficiently the position of the corresponding body parts. Finally, evaluation on public datasets such as HumanEva demonstrates that our approach achieves a 62.5mm-65mm average joint error for the walking activity and outperforms state-of-the-art methods in terms of accuracy and computational cost.