886 resultados para Difference-in-Difference


Relevância:

50.00% 50.00%

Publicador:

Resumo:

We consider the case of a multicenter trial in which the center specific sample sizes are potentially small. Under homogeneity, the conventional procedure is to pool information using a weighted estimator where the weights used are inverse estimated center-specific variances. Whereas this procedure is efficient for conventional asymptotics (e. g. center-specific sample sizes become large, number of center fixed), it is commonly believed that the efficiency of this estimator holds true also for meta-analytic asymptotics (e.g. center-specific sample size bounded, potentially small, and number of centers large). In this contribution we demonstrate that this estimator fails to be efficient. In fact, it shows a persistent bias with increasing number of centers showing that it isnot meta-consistent. In addition, we show that the Cochran and Mantel-Haenszel weighted estimators are meta-consistent and, in more generality, provide conditions on the weights such that the associated weighted estimator is meta-consistent.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

DIGE is a protein labelling and separation technique allowing quantitative proteomics of two or more samples by optical fluorescence detection of differentially labelled proteins that are electrophoretically separated on the same gel. DIGE is an alternative to quantitation by MS-based methodologies and can circumvent their analytical limitations in areas such as intact protein analysis, (linear) detection over a wide range of protein abundances and, theoretically, applications where extreme sensitivity is needed. Thus, in quantitative proteomics DIGE is usually complementary to MS-based quantitation and has some distinct advantages. This review describes the basics of DIGE and its unique properties and compares it to MS-based methods in quantitative protein expression analysis.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Abu-Saris and DeVault proposed two open problems about the difference equation x(n+1) = a(n)x(n)/x(n-1), n = 0, 1, 2,..., where a(n) not equal 0 for n = 0, 1, 2..., x(-1) not equal 0, x(0) not equal 0. In this paper we provide solutions to the two open problems. (c) 2004 Elsevier Inc. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper, we study the oscillating property of positive solutions and the global asymptotic stability of the unique equilibrium of the two rational difference equations [GRAPHICS] and [GRAPHICS] where a is a nonnegative constant. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper, we study the behavior of the positive solutions of the system of two difference equations [GRAPHICS] where p >= 1, r >= 1, s >= 1, A >= 0, and x(1-r), x(2-r),..., x(0), y(1-max) {p.s},..., y(0) are positive real numbers. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A numerical scheme is presented for the solution of the Euler equations of compressible flow of a real gas in a single spatial coordinate. This includes flow in a duct of variable cross-section, as well as flow with slab, cylindrical or spherical symmetry, as well as the case of an ideal gas, and can be useful when testing codes for the two-dimensional equations governing compressible flow of a real gas. The resulting scheme requires an average of the flow variables across the interface between cells, and this average is chosen to be the arithmetic mean for computational efficiency, which is in contrast to the usual “square root” averages found in this type of scheme. The scheme is applied with success to five problems with either slab or cylindrical symmetry and for a number of equations of state. The results compare favourably with the results from other schemes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A finite difference scheme is presented for the solution of the two-dimensional equations of steady, supersonic, compressible flow of real gases. The scheme incorparates numerical characteristic decomposition, is shock-capturing by design and incorporates space-marching as a result of the assumption that the flow is wholly supersonic in at least one space dimension. Results are shown for problems involving oblique hydraulic jumps and reflection from a wall.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A second order accurate, characteristic-based, finite difference scheme is developed for scalar conservation laws with source terms. The scheme is an extension of well-known second order scalar schemes for homogeneous conservation laws. Such schemes have proved immensely powerful when applied to homogeneous systems of conservation laws using flux-difference splitting. Many application areas, however, involve inhomogeneous systems of conservation laws with source terms, and the scheme presented here is applied to such systems in a subsequent paper.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A finite difference scheme based on flux difference splitting is presented for the solution of the one-dimensional shallow-water equations in open channels, together with an extension to two-dimensional flows. A linearized problem, analogous to that of Riemann for gas dynamics, is defined and a scheme, based on numerical characteristic decomposition, is presented for obtaining approximate solutions to the linearized problem. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second-order scheme which avoids non-physical, spurious oscillations. The scheme is applied to a one-dimensional dam-break problem, and to a problem of flow in a river whose geometry induces a region of supercritical flow. The scheme is also applied to a two-dimensional dam-break problem. The numerical results are compared with the exact solution, or other numerical results, where available.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper represents the last technical contribution of Professor Patrick Parks before his untimely death in February 1995. The remaining authors of the paper, which was subsequently completed, wish to dedicate the article to Patrick. A frequency criterion for the stability of solutions of linear difference equations with periodic coefficients is established. The stability criterion is based on a consideration of the behaviour of a frequency hodograph with respect to the origin of coordinates in the complex plane. The formulation of this criterion does not depend on the order of the difference equation.