870 resultados para Developmental instability
Resumo:
The present study was designed to analyse the effect of the length of exposure to a long photoperiod imposed c. 3 weeks after sowing in spring wheat (cv. UQ189) and barley (cv. Arapiles) to (i) establish whether the response to the number of cycles of exposure is quantitative or qualitative, (ii) determine the existence of a commitment to particular stages well before the stage has been observable, and (iii) study the interrelationships between the effects on final leaf number and phyllochron when the stimulus is provided several days after seedling emergence. Both wheat and barley seemed to respond quantitatively to the number of long-day cycles they were exposed to. However, wheat showed a requirement of approximately 4 long-day cycles to be able to produce a significant response in time to heading. The barley cultivar used in the study was responsive to the minimum length of exposure. The response to extended photoperiod cycles during the stem elongation phase was due to the ‘ memory’ photoperiod effects being related, in the case of wheat, to the fact that the pre-terminal spikelet appearance phase saturated its photoperiod response well before that stage was reached. Therefore, the commitment to the terminal spikelet appearance in wheat may be reached well before this stage could be recognized. As the response in duration to heading exceeded that of the final leaf number, and the stem elongation phase responded to memory effects of photoperiod, the phyllochron of both cereals was responsive to the treatments accelerating the average phyllochron when exposed to longer periods of long days. The response in average phyllochron was due to a switch from bi-linear to linear models of leaf number v. time when the conditions were increasingly inductive, with the phyllochron of the initial (6–8) leaves being similar for all treatments (within each species), and from then on increased.
Resumo:
Background: The zona limitans intrathalamica (ZLI) and the isthmus organizer (IsO) are two major secondary organizers of vertebrate brain development. These organizers are located at the interface of the expression domains of key patterning genes (Fezf-Irx and Otx-Gbx, respectively). To gain insights into the evolutionary origin of the ZLI, we studied Fezf in bilaterians. Results: In this paper, we identified a conserved sequence motif (Fezf box) in all bilaterians. We report the expression pattern of Fezf in amphioxus and Drosophila and compare it with those of Gbx, Otx and Irx. We found that the relative expression patterns of these genes in vertebrates are fully conserved in amphioxus and flies, indicating that the genetic subdivisions defining the location of both secondary organizers in early vertebrate brain development were probably present in the last common ancestor of extant bilaterians. However, in contrast to vertebrates, we found that Irx-defective flies do not show an affected Fezf expression pattern. Conclusions: The absence of expression of the corresponding morphogens from cells at these conserved genetic boundaries in invertebrates suggests that the organizing properties might have evolved specifically in the vertebrate lineage by the recruitment of key morphogens to these conserved genetic locations.
Resumo:
Background: The zona limitans intrathalamica (ZLI) and the isthmus organizer (IsO) are two major secondary organizers of vertebrate brain development. These organizers are located at the interface of the expression domains of key patterning genes (Fezf-Irx and Otx-Gbx, respectively). To gain insights into the evolutionary origin of the ZLI, we studied Fezf in bilaterians. Results: In this paper, we identified a conserved sequence motif (Fezf box) in all bilaterians. We report the expression pattern of Fezf in amphioxus and Drosophila and compare it with those of Gbx, Otx and Irx. We found that the relative expression patterns of these genes in vertebrates are fully conserved in amphioxus and flies, indicating that the genetic subdivisions defining the location of both secondary organizers in early vertebrate brain development were probably present in the last common ancestor of extant bilaterians. However, in contrast to vertebrates, we found that Irx-defective flies do not show an affected Fezf expression pattern. Conclusions: The absence of expression of the corresponding morphogens from cells at these conserved genetic boundaries in invertebrates suggests that the organizing properties might have evolved specifically in the vertebrate lineage by the recruitment of key morphogens to these conserved genetic locations.
Resumo:
The oligodendrocyte myelin glycoprotein is a glycosylphosphatidylinositol-anchored protein expressed by neurons and oligodendrocytes in the CNS. Attempts have been made to identify the functions of the myelin-associated inhibitory proteins (MAIPs) after axonal lesion or in neurodegeneration. However, the developmental roles of some of these proteins and their receptors remain elusive. Recent studies indicate that NgR1 and the recently discovered receptor PirB restrict cortical synaptic plasticity. However, the putative factors that trigger these effects are unknown. Since Nogo-A is mostly associated with the endoplasmic reticulum and MAG appears late during development, the putative participation of OMgp should be considered. Here we examine the pattern of development of OMgp immunoreactive elements during mouse telencephalic development. OMgp immunoreactivity in the developing cortex follows the establishment of the thalamo-cortical barrel-field. At cellular level, we located OMgp neuronal membranes in dendrites and axons as well as in brain synaptosome fractions and axon varicosities. Lastly, the analysis of the barrel-field in OMgp-deficient mice revealed that although thalamo-cortical connections were formed, their targeting in layer IV was altered and numerous axons ectopically invaded layer II-III. Our data support the idea that early-expressed MAIPs play an active role during development and point to OMgp participating in thalamo-cortical connections.
Resumo:
Comment on: Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review. [Bull World Health Organ. 2014]
Resumo:
The subdivision of cell populations in compartments is a key event during animal development. In Drosophila, the gene apterous (ap) divides the wing imaginal disc in dorsal vs ventral cell lineages and is required for wing formation. ap function as a dorsal selector gene has been extensively studied. However, the regulation of its expression during wing development is poorly understood. In this study, we analyzed ap transcriptional regulation at the endogenous locus and identified three cis-regulatory modules (CRMs) essential for wing development. Only when the three CRMs are combined, robust ap expression is obtained. In addition, we genetically and molecularly analyzed the trans-factors that regulate these CRMs. Our results propose a three-step mechanism for the cell lineage compartment expression of ap that includes initial activation, positive autoregulation and Trithorax-mediated maintenance through separable CRMs.
Resumo:
Neurofilament proteins (NFs) are the major components of the intermediate filaments of the neuronal cytoskeleton. The three different NF proteins; the low (NF-L), medium (NF-M),and dendrites.NF proteins play an important role in neuronal development, and plasticity,and seem to contribute to the pathophysiology of several diseases. However, the detailed expression patterns of NF proteins in the course of postnatal aturation, and in response to seizures in the rat have remained unknown. In this work, I have studied the developmental expression and cellular distribution of the three NF proteins in the rat hippocampus during the postnatal development. The reactivity of NF proteins in response to kainic acid (KA)-induced status epilepticus (SE)was studied in the hippocampus of 9-day-old rats, and using in vitro organotypic hippocampal slices cultures prepared from P6-7 rats. The results showed that NF-L and NF-M proteins are expressed already at the postnatal day 1, while the expression of NF-H mainly occurred during the second postnatal week. The immunoreactivity of NF proteins varied depending on the cell type and sub-cellular location in the hippocampus. In adult rats, KA-induced SE typically results in severe and permanent NF degradation. However, in our P9 rats KA-induced SE resulted in a transient increase in the expression of NF proteins during the first few hours but not degradation. No neuronal death or mossy fiber sprouting was observed at any time after SE. The in vitro studies with OHCs, which mimick the in vivo developing models where a local injection of KA is applied(e.g. intrahippocampal), indicated that NF proteins were rapidly degraded in response to KA treatment, this effect being effectively inhibited by the treatment with the AMPA receptor antagonist CNQX, and calpain inhibitor MDL-28170. These compounds also significantly ameliorated the KA-induced region-specific neuronal damage. The NMDA receptor antagonist and the L-type Ca2+ channel blocker did not have any significant effect. In conclusion, the results indicate that the developmental expression of NF in the rat hippocampus is differentially regulated and targeted in the different hippocampal cell types during the postnatal development. Furthermore, despite SE, the mechanisms leading to NF degradation and neuronal death are not activated in P9 rats unlike in adults. The reason for this remains unknown. The results in organotypic hippocampal cultures confirm the validity of this in vitro model to study development processes, and to perform pharmacological studies. The results also suggest that calpain proteases as interesting pharmacological targets to reduce neuronal damage after acute excitotoxic insults.
Resumo:
A major problem in developmental neurotoxicity (DNT) risk assessment is the lack of toxicological hazard information for most compounds. Therefore, new approaches are being considered to provide adequate experimental data that allow regulatory decisions. This process requires a matching of regulatory needs on the one hand and the opportunities provided by new test systems and methods on the other hand. Alignment of academically and industrially driven assay development with regulatory needs in the field of DNT is a core mission of the International STakeholder NETwork (ISTNET) in DNT testing. The first meeting of ISTNET was held in Zurich on 23-24 January 2014 in order to explore the concept of adverse outcome pathway (AOP) to practical DNT testing. AOPs were considered promising tools to promote test systems development according to regulatory needs. Moreover, the AOP concept was identified as an important guiding principle to assemble predictive integrated testing strategies (ITSs) for DNT. The recommendations on a road map towards AOP-based DNT testing is considered a stepwise approach, operating initially with incomplete AOPs for compound grouping, and focussing on key events of neurodevelopment. Next steps to be considered in follow-up activities are the use of case studies to further apply the AOP concept in regulatory DNT testing, making use of AOP intersections (common key events) for economic development of screening assays, and addressing the transition from qualitative descriptions to quantitative network modelling.
Resumo:
INTRODUCTION: Two important risk factors for abnormal neurodevelopment are preterm birth and neonatal hypoxic ischemic encephalopathy. The new revisions of Griffiths Mental Development Scale (Griffiths-II, [1996]) and the Bayley Scales of Infant Development (BSID-II, [1993]) are two of the most frequently used developmental diagnostics tests. The Griffiths-II is divided into five subscales and a global development quotient (QD), and the BSID-II is divided into two scales, the Mental scale (MDI) and the Psychomotor scale (PDI). The main objective of this research was to establish the extent to which developmental diagnoses obtained using the new revisions of these two tests are comparable for a given child. MATERIAL AND METHODS: Retrospective study of 18-months-old high-risk children examined with both tests in the follow-up Unit of the Clinic of Neonatology of our tertiary care university Hospital between 2011 and 2012. To determine the concurrent validity of the two tests paired t-tests and Pearson product-moment correlation coefficients were computed. Using the BSID-II as a gold standard, the performance of the Griffiths-II was analyzed with receiver operating curves. RESULTS: 61 patients (80.3% preterm, 14.7% neonatal asphyxia) were examined. For the BSID-II the MDI mean was 96.21 (range 67-133) and the PDI mean was 87.72 (range 49-114). For the Griffiths-II, the QD mean was 96.95 (range 60-124), the locomotors subscale mean was 92.57 (range 49-119). The score of the Griffiths locomotors subscale was significantly higher than the PDI (p<0.001). Between the Griffiths-II QD and the BSID-II MDI no significant difference was found, and the area under the curve was 0.93, showing good validity. All correlations were high and significant with a Pearson product-moment correlation coefficient >0.8. CONCLUSIONS: The meaning of the results for a given child was the same for the two tests. Two scores were interchangeable, the Griffiths-II QD and the BSID-II MDI.
Resumo:
Uncoupling protein-3 (UCP3) is a member of the mitochondrial carrier family expressed preferentially in skeletal muscle and heart. It appears to be involved in metabolic handling of fatty acids in a way that minimizes excessive production of reactive oxygen species. Fatty acids are powerful regulators of UCP3 gene transcription. We have found that the role of peroxisome proliferator-activated receptor-α (PPARα) on the control of UCP3 gene expression depends on the tissue and developmental stage. In adults, UCP3 mRNA expression is unaltered in skeletal muscle from PPARα-null mice both in basal conditions and under the stimulus of starvation. In contrast, UCP3 mRNA is down-regulated in adult heart both in fed and fasted PPARα-null mice. This occurs despite the increased levels of free fatty acids caused by fasting in PPARα-null mice. In neonates, PPARα-null mice show impaired UCP3 mRNA expression in skeletal muscle in response to milk intake, and this is not a result of reduced free fatty acid levels. The murine UCP3 promoter is activated by fatty acids through either PPARα or PPARδ but not by PPARγ or retinoid X receptor alone. PPARδ-dependent activation could be a potential compensatory mechanism to ensure appropriate expression of UCP3 gene in adult skeletal muscle in the absence of PPARα. However, among transcripts from other PPARα and PPARδ target genes, only those acutely induced by milk intake in wild-type neonates were altered in muscle or heart from PPARα-null neonates. Thus, PPARα-dependent regulation is required for appropriate gene regulation of UCP3 as part of the subset of fatty-acid-responsive genes in neonatal muscle and heart.
Resumo:
We show how certain N-dimensional dynamical systems are able to exploit the full instability capabilities of their fixed points to do Hopf bifurcations and how such a behavior produces complex time evolutions based on the nonlinear combination of the oscillation modes that emerged from these bifurcations. For really different oscillation frequencies, the evolutions describe robust wave form structures, usually periodic, in which selfsimilarity with respect to both the time scale and system dimension is clearly appreciated. For closer frequencies, the evolution signals usually appear irregular but are still based on the repetition of complex wave form structures. The study is developed by considering vector fields with a scalar-valued nonlinear function of a single variable that is a linear combination of the N dynamical variables. In this case, the linear stability analysis can be used to design N-dimensional systems in which the fixed points of a saddle-node pair experience up to N21 Hopf bifurcations with preselected oscillation frequencies. The secondary processes occurring in the phase region where the variety of limit cycles appear may be rather complex and difficult to characterize, but they produce the nonlinear mixing of oscillation modes with relatively generic features
Multisystem Developmental Disorder in Children from 2 to 6 Years Old : A Three Years Follow-Up Study
Resumo:
This research studied children who had been diagnosed with Multisystem Developmental Disorder (MSDD) (NC, 2002) under the Diagnostic Classifications of Mental Health and Developmental Disorders of Infancy and Early Childhood (DC: 0 - 3). They all showed, to a varying degree, difficulties in relating to others, play, affective interaction and severe delay in developing communication skills. Some studies have observed continuity in the diagnosis of autism during the first years of life. The objective of this study is to analyse the development of infants with MSDD whose diagnosis of autism was not confirmed. We also attempted to verify any possible psychomotor developmental differences based on, or related to, the severity and typology (B and C) of the MSDD. To enable us to do this we carried out a 3-year follow-up during which we assessed the infants (n = 15) and their parents. They are 2 - 4 years old. Results showed that type B children did present a greater impairment of psychomotor development in assessment tests. However, we did not observe any correlation between the degree of severity of the initial symptoms and later diagnoses. Conclusion: although our sample is small, we can conclude that there isn’t a clear evolution in the diagnosis, but we have found significant differences in the symptomatology between the type B and C