953 resultados para Dendritic cell, Glucocorticoid, IL-10, IL-21, Treg
Resumo:
Th17-mediated immune responses have been recently identified as novel pathogenic mechanisms in a variety of conditions; however, their importance in allograft rejection processes is still debated. In this paper, we searched for MHC or minor Ag disparate models of skin graft rejection in which Th17 immune responses might be involved. We found that T cell-derived IL-17 is critical for spontaneous rejection of minor but not major Ag-mismatched skin grafts. IL-17 neutralization was associated with a lack of neutrophil infiltration and neutrophil depletion delayed rejection, suggesting neutrophils as an effector mechanism downstream of Th17 cells. Regulatory T cells (Tregs) appeared to be involved in Th17 reactivity. We found that in vivo Treg depletion prevented IL-17 production by recipient T cells. An adoptive cotransfer of Tregs with naive monospecific antidonor T cells in lymphopenic hosts biased the immune response toward Th17. Finally, we observed that IL-6 was central for balancing Tregs and Th17 cells as demonstrated by the prevention of Th17 differentiation, the enhanced Treg/Th17 ratio, and a net impact of rejection blockade in the absence of IL-6. In conclusion, the ability of Tregs to promote the Th17/neutrophil-mediated pathway of rejection that we have described should be considered as a potential drawback of Treg-based cell therapy.
Resumo:
In this study, we have investigated the role of CD69, an early inducible leukocyte activation receptor, in murine dendritic cell (DC) differentiation, maturation, and migration. Skin DCs and DC subsets present in mouse lymphoid organs express CD69 in response to maturation stimuli. Using a contact sensitization model, we show that skin DCs migrated more efficiently to draining lymph nodes (LNs) in the absence of CD69. This was confirmed by subcutaneous transfer of CD69-/- DCs, which presented an increased migration to peripheral LNs. Two-photon microscopy analysis showed that once DCs reached the LNs, CD69 deficiency did not alter DC interstitial motility in the LNs. Chemotaxis to sphingosine-1-phosphate (S1P) was enhanced in CD69-/- DCs compared with wild-type DCs. Accordingly, we detected a higher expression of S1P receptor type-1 (S1P(1)) by CD69-/- DCs, whereas S1P(3) expression levels were similar in wild-type and CD69-/- DCs. Moreover, in vivo treatment with S1P analogs SEW2871 and FTY720 during skin sensitization reduced skin DC migration to peripheral LNs. These results suggest that CD69 regulates S1P-induced skin DC migration by modulating S1P(1) function. Together, our findings increase our knowledge on DC trafficking patterns in the skin, enabling the development of new directed therapies using DCs for antigen (Ag) delivery.
Resumo:
BACKGROUND: During the past ten years many quantitative trait loci (QTL) affecting mastitis incidence and mastitis related traits like somatic cell score (SCS) were identified in cattle. However, little is known about the molecular architecture of QTL affecting mastitis susceptibility and the underlying physiological mechanisms and genes causing mastitis susceptibility. Here, a genome-wide expression analysis was conducted to analyze molecular mechanisms of mastitis susceptibility that are affected by a specific QTL for SCS on Bos taurus autosome 18 (BTA18). Thereby, some first insights were sought into the genetically determined mechanisms of mammary gland epithelial cells influencing the course of infection. METHODS: Primary bovine mammary gland epithelial cells (pbMEC) were sampled from the udder parenchyma of cows selected for high and low mastitis susceptibility by applying a marker-assisted selection strategy considering QTL and molecular marker information of a confirmed QTL for SCS in the telomeric region of BTA18. The cells were cultured and subsequently inoculated with heat-inactivated mastitis pathogens Escherichia coli and Staphylococcus aureus, respectively. After 1, 6 and 24 h, the cells were harvested and analyzed using the microarray expression chip technology to identify differences in mRNA expression profiles attributed to genetic predisposition, inoculation and cell culture. RESULTS: Comparative analysis of co-expression profiles clearly showed a faster and stronger response after pathogen challenge in pbMEC from less susceptible animals that inherited the favorable QTL allele 'Q' than in pbMEC from more susceptible animals that inherited the unfavorable QTL allele 'q'. Furthermore, the results highlighted RELB as a functional and positional candidate gene and related non-canonical Nf-kappaB signaling as a functional mechanism affected by the QTL. However, in both groups, inoculation resulted in up-regulation of genes associated with the Ingenuity pathways 'dendritic cell maturation' and 'acute phase response signaling', whereas cell culture affected biological processes involved in 'cellular development'. CONCLUSIONS: The results indicate that the complex expression profiling of pathogen challenged pbMEC sampled from cows inheriting alternative QTL alleles is suitable to study genetically determined molecular mechanisms of mastitis susceptibility in mammary epithelial cells in vitro and to highlight the most likely functional pathways and candidate genes underlying the QTL effect.
Resumo:
VE-cadherin is the essential adhesion molecule in endothelial adherens junctions, and the regulation of protein tyrosine phosphorylation is thought to be important for the control of adherens junction integrity. We show here that VE-PTP (vascular endothelial protein tyrosine phosphatase), an endothelial receptor-type phosphatase, co-precipitates with VE-cadherin, but not with beta-catenin, from cell lysates of transfected COS-7 cells and of endothelial cells. Co-precipitation of VE-cadherin and VE-PTP required the most membrane-proximal extracellular domains of each protein. Expression of VE-PTP in triple-transfected COS-7 cells and in CHO cells reversed the tyrosine phosphorylation of VE-cadherin elicited by vascular endothelial growth factor receptor 2 (VEGFR-2). Expression of VE-PTP under an inducible promotor in CHO cells transfected with VE-cadherin and VEGFR-2 increased the VE-cadherin-mediated barrier integrity of a cellular monolayer. Surprisingly, a catalytically inactive mutant form of VE-PTP had the same effect on VE-cadherin phosphorylation and cell layer permeability. Thus, VE-PTP is a transmembrane binding partner of VE-cadherin that associates through an extracellular domain and reduces the tyrosine phosphorylation of VE-cadherin and cell layer permeability independently of its enzymatic activity.
Resumo:
Folliculo-stellate cells are a nonendocrine, sustentacular-like complementary population of the anterior pituitary. They currently are considered as functionally and phenotypically heterogeneous, with one subpopulation of folliculo-stellate cells possibly representing resident adenohypophyseal macrophages. We took advantage of a limited T-cell mediated inflammatory reaction selectively involving tumor tissue in three cases of pituitary adenoma (2 prolactin cell adenomas, and 1 null cell adenoma) to test the hypothesis whether some folliculo-stellate cells within inflammatory foci would also assume monocytic/dendritic properties. Immunohistochemical double labeling for S-100 protein and the class II major histocompatibility antigen HLA-DR indeed showed several arborized cells to coexpress both epitopes. These were distributed both amidst adenomatous acini and along intratumoral vessels, and were morphologically undistinguishable from conventional folliculo-stellate cells. On the other hand, markers of follicular dendritic cells (CD21) and Langerhans' cells (CD1a) tested negative. Furthermore, no S-100/HLA-DR coexpressing folliculo-stellate cells were seen in either peritumoral parenchyma of the cases in point nor in control pituitary adenomas lacking inflammatory reaction. These findings suggest that a subset of folliculo-stellate cells may be induced by an appropriate local inflammatory microenvironment to assume a dendritic cell-like immunophenotype recognizable by their coexpression of S-100 protein and HLA-DR. By analogy with HLA-DR expressing cells in well-established extrapituitary inflammatory constellations, we speculate that folliculo-stellate cells with such immunophenotype may actually perform professional antigen presentation. A distinctly uncommon finding in pituitary adenomas, lymphocytic infiltrates may therefore be read as a manifestation of tumoral immunosurveillance.
Resumo:
While glucocorticoid (GC) administration appears to be beneficial during the acute phase of treatment of neonates at risk of developing chronic lung disease, it is still not clear whether steroid application has an adverse long-term effect on the lung maturation. Thus, the goal of the present work was to analyze GC effects on the pulmonary structure in a rat model where dosage and timing of drug administration were adapted to the therapeutic situation in human neonatology. The animals received daily a maximum of 0.1 mg dexamethasone phosphate per kilogram body weight during the first 4 postnatal days. Investigations were performed at the light microscopic level by means of a digital image analysis system. While there were no differences in the lung architecture between experimental animals and controls on day 4, the earliest time point of observation, we found a widening of airspaces with a concomitant decrease in the alveolar surface area density, representing a loss of parenchymal complexity, on days 10 and 21 in treated rats. On days 36 and 60, however, no alterations in the pulmonary parenchyma could be detected in experimental animals. We conclude from these findings that the GC-induced initial inhibition of development (days 10 and 21) was completely reversed, so that a normal parenchymal architecture and also a normal alveolar surface area density were found in adult rats (days 36 and 60). From the results obtained using the regimen of GC administration described, mimicking more closely the steroid treatment in human neonatology, we conclude that the observed short-term adverse effects on lung development can be fully compensated until adult age.
Resumo:
Prematurely born babies are often treated with glucocorticoids. We studied the consequences of an early postnatal and short dexamethasone treatment (0.1-0.01 microg/g, days 1-4) on lung development in rats, focusing on its influence on peaks of cell proliferation around day 4 and of programmed cell death at days 19-21. By morphological criteria, we observed a dexamethasone-induced premature maturation of the septa (day 4), followed by a transient septal immatureness and delayed alveolarization leading to complete rescue of the structural changes. The numbers of proliferating (anti-Ki67) and dying cells (TdT-mediated dUTP nick end labeling) were determined and compared with controls. In dexamethasone-treated animals, both the peak of cell proliferation and the peak of programmed cell death were reduced to baseline, whereas the expression of tissue transglutaminase (transglutaminase-C), another marker for postnatal lung maturation, was not significantly altered. We hypothesize that a short neonatal course of dexamethasone leads to severe but transient structural changes of the lung parenchyma and influences the balance between cell proliferation and cell death even in later stages of lung maturation.
Resumo:
Microbial exposure following birth profoundly impacts mammalian immune system development. Microbiota alterations are associated with increased incidence of allergic and autoimmune disorders with elevated serum IgE as a hallmark. The previously reported abnormally high serum IgE levels in germ-free mice suggests that immunoregulatory signals from microbiota are required to control basal IgE levels. We report that germ-free mice and those with low-diversity microbiota develop elevated serum IgE levels in early life. B cells in neonatal germ-free mice undergo isotype switching to IgE at mucosal sites in a CD4 T-cell- and IL-4-dependent manner. A critical level of microbial diversity following birth is required in order to inhibit IgE induction. Elevated IgE levels in germ-free mice lead to increased mast-cell-surface-bound IgE and exaggerated oral-induced systemic anaphylaxis. Thus, appropriate intestinal microbial stimuli during early life are critical for inducing an immunoregulatory network that protects from induction of IgE at mucosal sites.
Resumo:
Macrophages regulate lymphatic vasculature development; however, the molecular mechanisms regulating their recruitment to developing, and adult, lymphatic vascular sites are not known. Here, we report that resting mice deficient for the inflammatory chemokine-scavenging receptor, ACKR2, display increased lymphatic vessel density in a range of tissues under resting and regenerating conditions. This appears not to alter dendritic cell migration to draining lymph nodes but is associated with enhanced fluid drainage from peripheral tissues and thus with a hypotensive phenotype. Examination of embryonic skin revealed that this lymphatic vessel density phenotype is developmentally established. Further studies indicated that macrophages and the inflammatory CC-chemokine CCL2, which is scavenged by ACKR2, are associated with this phenotype. Accordingly, mice deficient for the CCL2 signalling receptor, CCR2, displayed a reciprocal phenotype of reduced lymphatic vessel density. Further examination revealed that proximity of pro-lymphangiogenic macrophages to developing lymphatic vessel surfaces is increased in ACKR2-deficient mice and reduced in CCR2-deficient mice. Therefore, these receptors regulate vessel density by reciprocally modulating pro-lymphangiogenic macrophage recruitment, and proximity, to developing, resting and regenerating lymphatic vessels.
Resumo:
The porcine skin has striking similarities to the human skin in terms of general structure, thickness, hair follicle content, pigmentation, collagen and lipid composition. This has been the basis for numerous studies using the pig as a model for wound healing, transdermal delivery, dermal toxicology, radiation and UVB effects. Considering that the skin also represents an immune organ of utmost importance for health, immune cells present in the skin of the pig will be reviewed. The focus of this review is on dendritic cells, which play a central role in the skin immune system as they serve as sentinels in the skin, which offers a large surface area exposed to the environment. Based on a literature review and original data we propose a classification of porcine dendritic cell subsets in the skin corresponding to the subsets described in the human skin. The equivalent of the human CD141(+) DC subset is CD1a(-)CD4(-)CD172a(-)CADM1(high), that of the CD1c(+) subset is CD1a(+)CD4(-)CD172a(+)CADM1(+/low), and porcine plasmacytoid dendritic cells are CD1a(-)CD4(+)CD172a(+)CADM1(-). CD209 and CD14 could represent markers of inflammatory monocyte-derived cells, either dendritic cells or macrophages. Future studies for example using transriptomic analysis of sorted populations are required to confirm the identity of these cells.
Resumo:
BACKGROUND To analyze the impact of weight loss before and during chemoradiation on survival outcomes in patients with locally advanced head and neck cancer. METHODS From 07/1994-07/2000 a total of 224 patients with squamous cell carcinoma of the head and neck were randomized to either hyperfractionated radiation therapy alone or the same radiation therapy combined with two cycles of concomitant cisplatin. The primary endpoint was time to any treatment failure (TTF); secondary endpoints were locoregional recurrence-free survival (LRRFS), distant metastasis-free survival (DMFS) and overall survival (OS). Patient weight was measured 6 months before treatment, at treatment start and treatment end. RESULTS The proportion of patients with >5% weight loss was 32% before, and 51% during treatment, and the proportion of patients with >10% weight loss was 12% before, and 17% during treatment. After a median follow-up of 9.5 years (range, 0.1 - 15.4 years) weight loss before treatment was associated with decreased TTF, LRRFS, DMFS, cancer specific survival and OS in a multivariable analysis. However, weight loss during treatment was not associated with survival outcomes. CONCLUSIONS Weight loss before and during chemoradiation was commonly observed. Weight loss before but not during treatment was associated with worse survival.
Resumo:
The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens, including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of the so-called "damage-associated molecular patterns" (DAMPs). The emission of DAMPs and other immunostimulatory factors by cells succumbing to immunogenic cell death (ICD) favors the establishment of a productive interface with the immune system. This results in the elicitation of tumor-targeting immune responses associated with the elimination of residual, treatment-resistant cancer cells, as well as with the establishment of immunological memory. Although ICD has been characterized with increased precision since its discovery, several questions remain to be addressed. Here, we summarize and tabulate the main molecular, immunological, preclinical, and clinical aspects of ICD, in an attempt to capture the essence of this phenomenon, and identify future challenges for this rapidly expanding field of investigation.
Resumo:
Understanding the regulation of T-cell responses during inflammation and auto-immunity is fundamental for designing efficient therapeutic strategies against immune diseases. In this regard, prostaglandin E2 (PGE2) is mostly considered a myeloid-derived immunosuppressive molecule. We describe for the first time that T cells secrete PGE2 during T-cell receptor stimulation. In addition, we show that autocrine PGE2 signaling through EP receptors is essential for optimal CD4(+) T-cell activation in vitro and in vivo, and for T helper 1 (Th1) and regulatory T cell differentiation. PGE2 was found to provide additive co-stimulatory signaling through AKT activation. Intravital multiphoton microscopy showed that triggering EP receptors in T cells is also essential for the stability of T cell-dendritic cell (DC) interactions and Th-cell accumulation in draining lymph nodes (LNs) during inflammation. We further demonstrated that blocking EP receptors in T cells during the initial phase of collagen-induced arthritis in mice resulted in a reduction of clinical arthritis. This could be attributable to defective T-cell activation, accompanied by a decline in activated and interferon-γ-producing CD4(+) Th1 cells in draining LNs. In conclusion, we prove that T lymphocytes secret picomolar concentrations of PGE2, which in turn provide additive co-stimulatory signaling, enabling T cells to attain a favorable activation threshold. PGE2 signaling in T cells is also required for maintaining long and stable interactions with DCs within LNs. Blockade of EP receptors in vivo impairs T-cell activation and development of T cell-mediated inflammatory responses. This may have implications in various pathophysiological settings.