470 resultados para Defenses
Resumo:
Deficient antioxidant defenses in preterm infants have been implicated in diseases such as bronchopulmonary dysplasia, retinopathy of prematurity, necrotizing enterocolitis, periventricular leukomalacia, and intraventricular hemorrhage. The antioxidant properties of selenium, vitamin A, and vitamin E make these elements important in the nutrition of Very Low-Birth Weight (VLBW) infants. Selenium is a component of glutathione peroxidase, an enzyme that prevents the production of free radicals. The decrease in plasma selenium in VLBW infants in the first month after birth makes evident that preterm infants have low selenium store and require supplementation by parenteral and enteral nutrition. A meta-analysis, with only three trials, showed that selenium supplementation did not affect mortality, and the incidence of neonatal chronic lung disease or retinopathy of prematurity, but was associated with a reduction in lateonset sepsis. Most VLBW infants and extremely Low-Birth Weight Infants (ELBW) are born with low vitamin A stores and need vitamin A supplementation by intramuscular or enteral route. Low plasma retinol concentrations increase the risk of chronic lung disease/bronchopulmonary dysplasia and long-term respiratory disabilities in preterm infants. There is evidence that vitamin A supplementation decreases the mortality or oxygen requirement at one month of age, and oxygen requirement at 36 weeks’ postmenstrual age. Vitamin E blocks natural peroxidation of polyunsaturated fatty acids from lipid layers of cell membranes. VLBW infants have a decrease in plasma concentrations in the first month after birth suggesting the need of vitamin E supplementation. A meta-analysis on vitamin E supplementation concluded that vitamin E did not affect mortality, risk of bronchopulmonary dysplasia, and necrotizing enterocolitis but reduced the risk of intraventricular hemorrhage and increased the risk of sepsis. Serum vitamin E concentrations higher than 3.5 mg/dL are associated with a decrease in the risk of severe retinopathy of prematurity, and blindness, but also with an increase in neonatal sepsis. Caution is recommended with the supplementation of high doses of parenteral vitamin E and supplementation that increases serum levels above 3.5 mg/dL. In conclusion: although it is known that preterm infants are deficient in selenium, vitamin A and E, more studies are required to determine the best way to supplement and the impact of supplementation on neonatal outcome.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study documents one of the slowest feeding behaviors ever recorded for a muricid gastropod in one of the most biotically rigorous regions on the planet. In Pacific Panama, Vitularia salebrosa attacks mollusks by drilling through their shells. The duration of attacks estimated by isotope sclerochronology of oyster shells collected during attacks in progress range from 90 to 230 days, while experimental observation of interactions documented one attack greater than 103 days. The prolonged nature of attacks suggests that V. salebrosa is best characterized as an ectoparasite than as a predator, which is the ancestral condition in the Muricidae. An ectoparasitic lifestyle is also evident in the unusual interaction traces of this species, which include foot scars, feeding tunnels and feeding tubes, specialized soft anatomy, and in the formation of male-female Pairs, which is consistent with protandrous hermaphroditism, as is typical in sedentary gastropods. To delay death of its host, V. salebrosa targets renewable resources when feeding, such as blood and digestive glands. A congener, Vitularia miliaris from the Indo-Pacific, has an identical feeding biology The origin and persistence of extremely slow feeding in the tropics challenges our present understanding of selective pressures influencing the evolution of muricid feeding behaviors and morphological adaptations. Previously, it has been suggested that faster feeding is advantageous because it permits predators to spend a greater proportion of time hiding in enemy-free refugia or to take additional prey, the energetic benefits of which could be translated into increased fecundity or defenses. The benefits of exceptionally slow feeding have received little consideration. In the microhabitat preferred by V. salebrosa (beneath boulders), it is possible that prolonged interactions with hosts decrease vulnerability to enemies by reducing the frequency of risky foraging events between feedings . Ectoparasitic feeding through tunnels by V. salebrosa may also reduce competitive interactions with kleptoparasites (e.g., crabs, snails) that steal food through the gaped valves of dead or dying hosts.
Resumo:
Background: Prolonged preoperative fasting increases insulin resistance (IR). The authors investigated whether an abbreviated preoperative fast with glutamine (GLN) plus a carbohydrate (CHO)-based beverage would improve the organic response after surgery. Methods: Forty-eight female patients (19-62 years) were randomized to either standard fasting (control group) or to fasting with 1 of 3 different beverages before video-cholecystectomy. Beverages were consumed 8 hours (400 mL; placebo group: water; GLN group: water with 50 g maltodextrine plus 40 g GLN; and CHO group: water with 50 g maltodextrine) and 2 hours (200 mL; placebo: water; GLN: water with 25 g maltodextrine plus 10 g GLN; and CHO: water with 25 g maltodextrine) before anesthesia. Blood samples were collected pre- and postoperatively. Results: The mean (SEM) postoperative homeostasis model assessment-insulin resistance was greater (P < .05) in control patients (4.3 [1.3]) than in the other groups (placebo, 1.6 [0.3]; CHO, 2.3 [0.4]; and GLN, 1.5 [0.1]). Glutathione was significantly higher (P < .01) in the GLN group than in both CHO and control groups. Interleukin-6 increased in all groups except the GLN group. The C-reactive protein/albumin ratio was higher (P < .05) in controls than in CHO and GLN groups. The nitrogen balance was less negative in GLN (-2.5 [0.8] gN) than in both placebo (-9.0 [2] gN; P = .001) and control (-6.6 [0.4] gN; P = .04) groups. Conclusions Preoperative intake of a GLN-enriched CHO beverage appears to improve IR and antioxidant defenses and decreases the inflammatory response after video-cholecystectomy. (JPEN J Parenter Enteral Nutr. 2012; 36: 43-52)
Resumo:
Florianopolis, a city located in the Santa Catarina State in southern Brazil, is the national leading producer of bivalve mollusks. The quality of bivalve mollusks is closely related to the sanitary conditions of surrounding waters where they are cultivated. Presently, cultivation areas receive large amounts of effluents derived mainly from treated and non-treated domestic, rural, and urban sewage. This contributes to the contamination of mollusks with trace metals, pesticides, other organic compounds, and human pathogens such as viruses, bacteria, and protozoan. The aim of this study was to perform a thorough diagnosis of the shellfish growing areas in Florianopolis, on the coast of Santa Catarina. The contamination levels of seawater, sediments, and oysters were evaluated for their microbiological, biochemical, and chemical parameters at five sea sites in Florianopolis, namely three regular oyster cultivation areas (Sites 1, 2, and oyster supplier), a polluted site (Site 3), and a heavily polluted site (Site 4). Samples were evaluated at day zero and after 14 days. Seawater and sediment samples were collected just once, at the end of the experiment. Antioxidant defenses, which may occur in contaminated environments in response to the increased production of reactive oxygen species (ROS) by organisms, were analyzed in oysters, as well as organic compounds (in oysters and sediment samples) and microbiological contamination (in oysters and seawater samples). The results showed the presence of the following contaminants: fecal coliforms in seawater samples (four sites), human adenovirus (all sites), human noroviruses GI and GII (two sites), Hepatitis A viruses (one site), JC Polyomavirus in an oyster sample from the oyster supplier, Giardia duodenalis cysts, and Cryptosporidium sp oocysts (one site). Among organochlorine pesticides, only DDT (dichlorodiphenyltrichloroethane) and HCH (hexachlorocyclohexane) were detected in some sediment and oysters samples in very low levels; site 4 had the highest concentrations of total aliphatic hydrocarbons. PAHs, and linear alkylbenzenes (LABs) found either in oysters or in sediment samples. The major concentration of fecal sterol coprostanol was found at site 4, followed by site 3. After 14 days of allocation in the four selected sites, there was a significant difference in the enzymes analyzed at the monitored spots. The detection of different contaminants in oysters, seawater, and sediment samples in the present study shows the impact untreated or inadequately treated effluents have on coastal areas. These results highlight the need for public investment in adequate wastewater treatment and adequate treatment of oysters, ensuring safe areas for shellfish production as well as healthier bivalve mollusks for consumption.
Resumo:
Introduction: Although Enterococcus faecalis is a member of the normal microbiota, it is also a major cause of nosocomial infections. Some strains of E. faecalis produce capsule, which contributes to pathogenesis through evasion of host defenses, and its production is dependent on the capsule (cps) operon polymorphism. This study investigated cps locus polymorphism in distinct lineages of E. faecalis isolated from canals of root-filled teeth with periapical lesions. Methods: Twenty-two E. faecalis isolates were evaluated regarding the cps operon polymorphism and genetic diversity. The 3 known CPS types were determined by polymerase chain reaction. This information was correlated with multilocus sequence typing data, which were used to define genetic lineages. Results: cpsA and cpsB were the only detected genes within the cps operon in 62.5% of E. faecalis strains (14/22), indicative of genotype CPS 1, which lacks capsule expression. The essential genes in the cps operon for capsule production were detected in the remaining strains, whereas 3 belonged to genotype CPS 5 and 5 strains to genotype CPS 2. A total of 14 sequence types (STs) were resolved in 22 E. faecalis isolates. Comparison with the E. faecalis international multilocus sequence typing database revealed that 9 STs were previously found, and that the 5 STs were novel. Conclusions: Certain E. faecalis genotypes from canals of root-filled teeth with periapical lesions belong to lineages associated with capsule expression and production of multiple virulence factors, which might account for their increased pathogenic potential. (J Endod 2012;38:58-61)
Resumo:
Non-myrmecophilous lepidopteran larvae using plants bearing ant attractants such as extrafloral nectaries are good models for studying morphological and behavioural mechanisms against ant predation. Udranomia spitzi (Hesperiidae) is a butterfly whose larvae feed on leaves of Ouratea spectabilis (Ochnaceae), a plant with extrafloral nectaries. We described the early stages of U. spitzi, and used field observations and experiments to investigate the defensive strategies of caterpillars against predatory ants. Larvae pass through five instars and pupation occurs inside larval leaf shelters. Ant-exclusion experiments revealed that the presence of ants did not affect significantly caterpillar survival. Predation experiments showed that vulnerability to ant predation decreased with increase in larval size. The present study showed that predatory ants are not as relevant as demonstrated for other systems, and also illustrates how observational data and field experiments can contribute to a better understanding of the biology and ecology of a species of interest.
Resumo:
The innate immune response of insects is one of the factors that may dictate their susceptibility to viral infection. Two immune signaling pathways, Toll and JAK-STAT, and the RNA interference (RNAi) pathway are involved in Aedes aegypti responses against dengue virus (DENV), however natural differences in these antiviral defenses among mosquito populations have not been studied. Here, two field Ae. aegypti populations from distinct ecological environments, one from Recife and the other from Petrolina (Brazil), and a laboratory strain were studied for their ability to replicate a primary isolate of dengue virus serotype 2 (DENV-2). Virus infectivity and replication were determined in insect tissues collected after viral exposure through reverse-transcription real time PCR (RT-PCR). The expression of a transcript representing these defense mechanisms (Toll, JAK-STAT and RNAi) in the midgut and fat body was studied with RTPCR to evaluate variations in innate immune mechanisms possibly employed against DENV. Analyses of infection rates indicated that the field populations were more susceptible to DENV-2 infection than the lab strain. There were distinct expression patterns among mosquito populations, in both control and infected insects. Moreover, lower expression of immune molecules in DENV-2-infected insects compared to controls was observed in the two field populations. These results suggest that natural variations in vector competence against DENV may be partly due to differences in mosquito defense mechanisms, and that the down-regulation of immune transcripts after viral infection depends on the insect strain. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The dengue virus non-structural 1 (NS1) protein contributes to evasion of host immune defenses and represents a target for immune responses. Evidences generated in experimental models, as well as the immune responses elicited by infected individuals, showed that induction of anti-NS1 immunity correlates with protective immunity but may also result in the generation of cross-reactive antibodies that recognize platelets and proteins involved in the coagulation cascade. In the present work, we evaluated the immune responses, protection to type 2 dengue virus (DENV2) challenges and safety parameters in BALB/c mice vaccinated with a recombinant NS1 protein in combination with three different adjuvants: aluminum hydroxide (alum), Freund's adjuvant (FA) or a genetically detoxified derivative of the heat-labile toxin (LTG33D), originally produced by some enterotoxigenic Escherichia coil (ETEC) strains. Mice were subcutaneously (s.c.) immunized with different vaccine formulations and the induced NS1-specific responses, including serum antibodies and T cell responses, were measured. Mice were also subjected to lethal challenges with the DENV2 NGC strain. The results showed that maximal protective immunity (50%) was achieved in mice vaccinated with NS1 in combination with LIG33D. Analyses of the NS1-specific immune responses showed that the anti-virus protection correlated mainly with the serum anti-NS1 antibody responses including higher avidity to the target antigen. Mice immunized with LTG33D elicited a prevailing IgG2a subclass response and generated antibodies with stronger affinity to the antigen than those generated in mice immunized with the other vaccine formulations. The vaccine formulations were also evaluated regarding induction of deleterious side effects and, in contrast to mice immunized with the FA-adjuvanted vaccine, no significant hepatic damage or enhanced C-reactive protein levels were detected in mice immunized with NS1 and LTG33D. Similarly, no detectable alterations in bleeding time and hematological parameters were detected in mice vaccinated with NS1 and LTG33D. Altogether, these results indicate that the combination of a purified recombinant NS1 and a nontoxic LT derivative is a promising alternative for the generation of safe and effective protein-based anti-dengue vaccine. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background: Increased plasma concentrations of free fatty acids (FFA) can lead to insulin resistance in skeletal muscle, impaired effects on mitochondrial function, including uncoupling of oxidative phosphorylation and decrease of endogenous antioxidant defenses. Nitric oxide (NO) is a highly diffusible gas that presents a half-life of 5-10 seconds and is involved in several physiological and pathological conditions. The effects of palmitic acid on nitric oxide (NO) production by rat skeletal muscle cells and the possible mechanism involved were investigated. Methods: Primary cultured rat skeletal muscle cells were treated with palmitic acid and NO production was assessed by nitrite measurement (Griess method) and 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Nuclear factor-kappa B (NF-kappa B) activation was evaluated by electrophoretic mobility shift assay and iNOS protein content by western blotting. Results: Palmitic acid treatment increased nitric oxide production. This effect was abolished by treatment with NOS inhibitors, L-nitro-arginine (LNA) and L-nitro-arginine methyl esther (L-NAME). NF-kappa B activation and iNOS content were increased due to palmitic acid treatment. The participation of superoxide on nitric oxide production was investigated by incubating the cells with DAF-2-DA in the presence or absence of palmitic acid, a superoxide generator system (X-XO), a mixture of NOS inhibitors and SOD-PEG (superoxide dismutase linked to polyethylene glycol). Palmitic acid and X-XO system increased NO production and this effect was abolished when cells were treated with NOS inhibitors and also with SOD-PEG. Conclusions: In summary, palmitic acid stimulates NO production in cultured skeletal muscle cells through production of superoxide, nuclear factor-kappa B activation and increase of iNOS protein content. Copyright (C) 2012 S. Karger AG, Basel