786 resultados para Data mining models


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trabalho de Projeto realizado para obtenção do grau de Mestre em Engenharia Informática e de Computadores

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para a obtenção do grau de Mestre em Estatística e Gestão da Informação

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players’ profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets’ participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents’ profiles and strategies resulting in a better representation of real market players’ behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Load forecasting has gradually becoming a major field of research in electricity industry. Therefore, Load forecasting is extremely important for the electric sector under deregulated environment as it provides a useful support to the power system management. Accurate power load forecasting models are required to the operation and planning of a utility company, and they have received increasing attention from researches of this field study. Many mathematical methods have been developed for load forecasting. This work aims to develop and implement a load forecasting method for short-term load forecasting (STLF), based on Holt-Winters exponential smoothing and an artificial neural network (ANN). One of the main contributions of this paper is the application of Holt-Winters exponential smoothing approach to the forecasting problem and, as an evaluation of the past forecasting work, data mining techniques are also applied to short-term Load forecasting. Both ANN and Holt-Winters exponential smoothing approaches are compared and evaluated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este documento foi redigido no âmbito da dissertação do Mestrado em Engenharia Informática na área de Arquiteturas, Sistemas e Redes, do Departamento de Engenharia Informática, do ISEP, cujo tema é diagnóstico cardíaco a partir de dados acústicos e clínicos. O objetivo deste trabalho é produzir um método que permita diagnosticar automaticamente patologias cardíacas utilizando técnicas de classificação de data mining. Foram utilizados dois tipos de dados: sons cardíacos gravados em ambiente hospitalar e dados clínicos. Numa primeira fase, exploraram-se os sons cardíacos usando uma abordagem baseada em motifs. Numa segunda fase, utilizamos os dados clínicos anotados dos pacientes. Numa terceira fase, avaliamos a combinação das duas abordagens. Na avaliação experimental os modelos baseados em motifs obtiveram melhores resultados do que os construídos a partir dos dados clínicos. A combinação das abordagens mostrou poder ser vantajosa em situações pontuais.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Atualmente, são geradas enormes quantidades de dados que, na maior parte das vezes, não são devidamente analisados. Como tal, existe um fosso cada vez mais significativo entre os dados existentes e a quantidade de dados que é realmente analisada. Esta situação verifica-se com grande frequência na área da saúde. De forma a combater este problema foram criadas técnicas que permitem efetuar uma análise de grandes massas de dados, retirando padrões e conhecimento intrínseco dos dados. A área da saúde é um exemplo de uma área que cria enormes quantidades de dados diariamente, mas que na maior parte das vezes não é retirado conhecimento proveitoso dos mesmos. Este novo conhecimento poderia ajudar os profissionais de saúde a obter resposta para vários problemas. Esta dissertação pretende apresentar todo o processo de descoberta de conhecimento: análise dos dados, preparação dos dados, escolha dos atributos e dos algoritmos, aplicação de técnicas de mineração de dados (classificação, segmentação e regras de associação), escolha dos algoritmos (C5.0, CHAID, Kohonen, TwoSteps, K-means, Apriori) e avaliação dos modelos criados. O projeto baseia-se na metodologia CRISP-DM e foi desenvolvido com a ferramenta Clementine 12.0. O principal intuito deste projeto é retirar padrões e perfis de dadores que possam vir a contrair determinadas doenças (anemia, doenças renais, hepatite, entre outras) ou quais as doenças ou valores anormais de componentes sanguíneos que podem ser comuns entre os dadores.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trabalho de Projeto apresentado como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A Internet das Coisas tal como o Big Data e a análise dos dados são dos temas mais discutidos ao querermos observar ou prever as tendências do mercado para as próximas décadas, como o volume económico, financeiro e social, pelo que será relevante perceber a importância destes temas na atualidade. Nesta dissertação será descrita a origem da Internet das Coisas, a sua definição (por vezes confundida com o termo Machine to Machine, redes interligadas de máquinas controladas e monitorizadas remotamente e que possibilitam a troca de dados (Bahga e Madisetti 2014)), o seu ecossistema que envolve a tecnologia, software, dispositivos, aplicações, a infra-estrutura envolvente, e ainda os aspetos relacionados com a segurança, privacidade e modelos de negócios da Internet das Coisas. Pretende-se igualmente explicar cada um dos “Vs” associados ao Big Data: Velocidade, Volume, Variedade e Veracidade, a importância da Business Inteligence e do Data Mining, destacando-se algumas técnicas utilizadas de modo a transformar o volume dos dados em conhecimento para as empresas. Um dos objetivos deste trabalho é a análise das áreas de IoT, modelos de negócio e as implicações do Big Data e da análise de dados como elementos chave para a dinamização do negócio de uma empresa nesta área. O mercado da Internet of Things tem vindo a ganhar dimensão, fruto da Internet e da tecnologia. Devido à importância destes dois recursos e á falta de estudos em Portugal neste campo, com esta dissertação, sustentada na metodologia do “Estudo do Caso”, pretende-se dar a conhecer a experiência portuguesa no mercado da Internet das Coisas. Visa-se assim perceber quais os mecanismos utilizados para trabalhar os dados, a metodologia, sua importância, que consequências trazem para o modelo de negócio e quais as decisões tomadas com base nesses mesmos dados. Este estudo tem ainda como objetivo incentivar empresas portuguesas que estejam neste mercado ou que nele pretendam aceder, a adoptarem estratégias, mecanismos e ferramentas concretas no que diz respeito ao Big Data e análise dos dados.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The interest in using information to improve the quality of living in large urban areas and its governance efficiency has been around for decades. Nevertheless, the improvements in Information and Communications Technology has sparked a new dynamic in academic research, usually under the umbrella term of Smart Cities. This concept of Smart City can probably be translated, in a simplified version, into cities that are lived, managed and developed in an information-saturated environment. While it makes perfect sense and we can easily foresee the benefits of such a concept, presently there are still several significant challenges that need to be tackled before we can materialize this vision. In this work we aim at providing a small contribution in this direction, which maximizes the relevancy of the available information resources. One of the most detailed and geographically relevant information resource available, for the study of cities, is the census, more specifically the data available at block level (Subsecção Estatística). In this work, we use Self-Organizing Maps (SOM) and the variant Geo-SOM to explore the block level data from the Portuguese census of Lisbon city, for the years of 2001 and 2011. We focus on gauging change, proposing ways that allow the comparison of the two time periods, which have two different underlying geographical bases. We proceed with the analysis of the data using different SOM variants, aiming at producing a two-fold portrait: one, of the evolution of Lisbon during the first decade of the XXI century, another, of how the census dataset and SOM’s can be used to produce an informational framework for the study of cities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

telligence applications for the banking industry. Searches were performed in relevant journals resulting in 219 articles published between 2002 and 2013. To analyze such a large number of manuscripts, text mining techniques were used in pursuit for relevant terms on both business intelligence and banking domains. Moreover, the latent Dirichlet allocation modeling was used in or- der to group articles in several relevant topics. The analysis was conducted using a dictionary of terms belonging to both banking and business intelli- gence domains. Such procedure allowed for the identification of relationships between terms and topics grouping articles, enabling to emerge hypotheses regarding research directions. To confirm such hypotheses, relevant articles were collected and scrutinized, allowing to validate the text mining proce- dure. The results show that credit in banking is clearly the main application trend, particularly predicting risk and thus supporting credit approval or de- nial. There is also a relevant interest in bankruptcy and fraud prediction. Customer retention seems to be associated, although weakly, with targeting, justifying bank offers to reduce churn. In addition, a large number of ar- ticles focused more on business intelligence techniques and its applications, using the banking industry just for evaluation, thus, not clearly acclaiming for benefits in the banking business. By identifying these current research topics, this study also highlights opportunities for future research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"Lecture notes in computer science series, ISSN 0302-9743, vol. 9273"

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Barotrauma is identified as one of the leading diseases in Ventilated Patients. This type of problem is most common in the Intensive Care Units. In order to prevent this problem the use of Data Mining (DM) can be useful for predicting their occurrence. The main goal is to predict the occurence of Barotrauma in order to support the health professionals taking necessary precautions. In a first step intensivists identified the Plateau Pressure values as a possible cause of Barotrauma. Through this study DM models (classification) where induced for predicting the Plateau Pressure class (>=30 cm

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia Industrial

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação de mestrado em Sistemas de Informação

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação