996 resultados para DSpace
Resumo:
Fivefold deformation twins were reported recently to be observed in the experiment of the nanocrystalline face-centered-cubic metals and alloys. However, they were not predicted previously based on the molecular dynamics (MD) simulations and the reason was thought to be a uniaxial tension considered in the simulations. In the present investigation, through introducing pretwins in grain regions, using the MD simulations, the authors predict out the fivefold deformation twins in the grain regions of the nanocrystal grain cell, which undergoes a uniaxial tension. It is shown in their simulation results that series of Shockley partial dislocations emitted from grain boundaries provide sequential twining mechanism, which results in fivefold deformation twins. (c) 2006 American Institute of Physics.
Resumo:
通过基体化学腐蚀法去掉钢基体,利用高分辨扫描电镜(HRSEM)就钢基体激光离散淬火对初始镀铬层界面微裂纹形貌影响进行研究.结果表明:激光处理的裂纹宽度近似是原始基体的一半;在离散处理的钢基体上镀铬可以在原始基体上形成一条与激光扫描方向相一致的宽裂纹.
Resumo:
In order to further investigate nanoindentation data of film-substrate systems and to learn more about the mechanical properties of nanometer film-substrate systems, two kinds of films on different substrate systems have been tested with a systematic variation in film thickness and substrate characteristics. The two kinds of films are aluminum and tungsten, which have been sputtered on to glass and silicon substrates, respectively. Indentation experiments were performed with a Nano Indent XP II with indenter displacements typically about two times the nominal film thicknesses. The resulting data are analyzed in terms of load-displacement curves and various comparative parameters, such as hardness, Young's modulus, unloading stiffness and elastic recovery. Hardness and Young's modulus are investigated when the substrate effects are considered. The results show how the composite hardness and Young's modulus are different for different substrates, different films and different film thicknesses. An assumption of constant Young's modulus is used for the film-substrate system, in which the film and substrate have similar Young's moduli. Composite hardness obtained by the Joslin and Oliver method is compared with the directly measured hardness obtained by the Oliver and Pharr method.
Resumo:
The voltage-current properties during plasma electrolytic discharge were determined by measuring the current density and cell voltage as functions of processing time and then by mathematical transformation. Correlation between discharge I-V property and the coatings microstructure on aluminum alloy during plasma electrolfic oxidation was determined by comparing the voltage-current properties at different process stages with SEM results of the corresponding coatings. The results show that the uniform passive film corresponds to a I-V property with one critical voltage, and a compound of porous layer and shred ceramic particles corresponds to a I-Vproperty with two critical voltages. The growth regularity of PEO cermet coatings was also studied.
Resumo:
The Electrical Resistance Tomography (ERT) technique possesses great potential in monitoring widely exiting industrial two/multi-phase flow. For vertical pipe flow and inclined pipe flow, some application studies with exciting results have been reported, but there is rarely a paper regarding the application of ERT to horizontal gas/liquid pipe flow. This paper addresses this issue and proposes a smart method, Liquid Level Detection method, to conventional ERT system. The enhanced ERT system using the new method can monitor horizontal pipe flow effectively and its application is no longer restricted by the flow conditions. Some experimental results from monitoring an air/water slug pipe flow are presented.
Resumo:
To accomplish laser-induced thermal loading simulation tests for pistons,the Gaussian beam was modulated into multi-circular beam with specific intensity distribution.A reverse method was proposed to design the intensity distribution for the laser-induced thermal loading based on finite element(FE) analysis.Firstly,the FE model is improved by alternating parameters of boundary conditions and thermal-physical properties of piston material in a reasonable range,therefore it can simulate the experimental resul...
Resumo:
The fluid characteristics of gas flows in the micronozzle whose throat height is 20 μm were investigated by the direct simulation Monte Carlo (DSMC) method. In a series of cases, the dependence of mass flux on the pressure difference was gained, and the DSMC's results show good agreement with the experimental data. The comparison of mass flux and the Mach number contours between the DSMC and Navier-Stokes equations adding slip boundary also reveals quantitatively that the continuum model will be invalid gradually even when the average Knudsen number is smaller than 0.01. As one focus of the present paper, the phenomenon of the multiple expansion-compression waves that comes from the nozzle's divergent part was analyzed in detailed.
Resumo:
The magnetic damping effect of the non-uniform magnetic field on the floating-zone crystal growth process in microgravity is studied by numerical simulation. The results show that the non-uniform magnetic field with designed configuration can effectively reduce the flow near the free surface and then in the melt zone. At the same time, the designed magnetic field can improve the impurity concentration non-uniformity along the solidification interface. The primary principles of the magnetic field configuration design are also discussed.
Resumo:
本文采用量钢分析的方法对油井砂质围岩的稳定性的主要影响因素进行了分析,并采用线性应变硬化弹塑性本构模型对球和柱形空洞进行了应力分析。
Resumo:
介绍爆炸排淤法在外海渔港防波堤工程中的应用及质量检测结果。
Resumo:
The effects of La2O3 addition on the microstructure and wear properties of laser clad gamma/C(r)7C(3)/TiC composite coatings on gamma-TiAl intermetallic alloy substrates with NiCr-Cr3C2 precursor mixed powders have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectrometer (EDS) and block-on-ring wear tests. The responding wear mechanisms are discussed in detail. The results are compared with that for composite coating without La2O3. The comparison indicates that no evident new crystallographic phases are formed except a rapidly solidified microstructure consisting of the primary hard Cr7C3 and TiC carbides and the gamma/Cr7C3 eutectics distributed in the tough gamma nickel solid solution matrix. Good finishing coatings can be achieved under a proper amount of La2O3-addition and a suitable laser processing parameters. The additions of rare-earth oxide La,03 can refine and purify the microstructure of coatings, relatively decrease the volume fraction of primary blocky Cr7C3 to Cr7C3/gamma eutectics, reduce the dilution of clad material from base alloy and increase the microhardness of the coatings. When the addition of La2O3 is approximately 4 wt.%, the laser clad composite coating possesses the highest hardness and toughness. The composite coating with 4 wt.%La2O3 addition can result the best enhancement of wear resistance of about 30%. However, too less or excessive addition amount of La2O3 have no better influence on wear resistance of the composite coating.
Resumo:
Experimental investigations on the ignition and combustion stabilization of kerosene with pilot hydrogen in Mach 2.5 airflows were conducted using two test combustors, with cross sections of 30.5 x 30 and 51 x 70 mm, respectively. Various integrated modules, including the combinations of different pilot injection schemes and recessed cavity flameholders with different geometries, were designed and tested. The stagnation pressure of vitiated air varied within the range of 1.1-1.8 NiPa, while the stagnation temperature varied from 1500 to 1900 K. Specifically, effects of the pilot hydrogen injection scheme, cavity geometry, and combustor scaling on the minimally required pilot hydrogen equivalence ratio were systematically examined. Results indicated that the cavity depth and length had significant effects on the ignition and flameholding, whereas the slanted angle of the aft wall was relatively less important. Two cavities in tandem were shown to be a more effective flameholding mechanism than that with a single cavity. The minimally required pilot hydrogen equivalence ratio for kerosene ignition and stable combustion was found to be as low as 0.02. Furthermore, combustion efficiency of 80% was demonstrated to be achievable for kerosene with the simultaneous use of pilot hydrogen and a recessed cavity to promote the ignition and global burning.