974 resultados para DOUBLY EXCITED-STATES
Resumo:
A novel diimine Cu(I)complex [Cu(ABPQ)(DPEphos)]BF4 [ABPQ and DPEphos are acenaphtho[1,2-b]bipyrido[2,3-h:3,2-f]quinoxaline and bis(2-(diphenylphosphanyl)phenyl) ether, respectively] is synthesized, and its photophysical properties are experimentally and theoretically characterized. The emission bands centered at ca. 400/470 and 550 nm of [Cu(ABPQ)(DPEphos)]BF4 are attributed to the ligand-centered pi -> pi* transition and the metal-to-ligand charge transfer d pi(Cu) -> pi*(N-N) transition, respectively. The luminescence quantum yield of [Cu(ABPQ)(DPEphos)]BF4 in CHCl3 is found to be about five times higher than that of [Cu(Phen)(DPEphos)]BF4.
Resumo:
The quantum yield, lifetime, and absorption spectrum of four [Ru(bpy)(2)L](+) [where bpy is 2,2'-bipyridyl; L is represented by the deprotonated form of 2-(1H-tetrazol-5-yl)pyridine (L1) or 2-(1H-tetrazol-5-yl)pyrazine (L2)], as well as their methylated complexes [Ru(bpy)(2)LMe](2+) (RuL1Me and RuL2Me) are closely ligand dependent. In this paper, density functional theory (DFT) and time-dependent DFT (TDDFT) were performed to compare the above properties among these complexes. The calculated results reveal that the replacement of pyridine by pyrazine or the attachment of a CH3 group to the tetrazolate ring greatly increases the pi-accepting ability of the ancillary ligands.
Resumo:
A series of cyclometalating platinum(II) complexes with substituted 9-arylcarbazolyl chromophores have been synthesized and characterized. These complexes are thermally stable and most of them have been characterized by X-ray crystallography. The phosphorescence emissions of the complexes are dominated by (MLCT)-M-3 excited states. The excited state properties of these complexes can be modulated by varying the electronic characteristics of the cyclometalating ligands via substituent effects, thus allowing the emission to be tuned from bright green to yellow, orange and red light. The correlation between the functional properties of these metallophosphors and the results of density functional theory calculations was made. Because of the propensity of the electron-rich carbazolyl group to facilitate hole injection/transport, the presence of such moiety can increase the highest occupied molecular orbital levels and improve the charge balance in the resulting complexes relative to the parent platinum(II) phosphor with 2-phenylpyridine ligand.
Resumo:
Bond distances, vibrational frequencies, dipole moments, dissociation energies, electron affinities, and ionization potentials of NIX (XM = Y-Cd, X = F, Cl, Br, I) molecules in neutral, positively, and negatively charged ions were studied by density functional method, B3LYP. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that besides ionic component, covalent bonds are formed between the 4d transition metal s, d orbitals, and the p orbital of halogen. For both neutral and charged molecules, the fluorides have the shortest bond distance, iodides the longest. Although the opposite situation is observed for vibrational frequency, that is, fluorides have the largest value, iodides the smallest. For neutral and anionic species, the dissociation energy tends to decrease with the increasing atomic number from Y to Cd, suggesting the decreasing or weakening of the bond strength. For cationic species, the trend is observed from Y to Ag.
Resumo:
Bond distances, vibrational frequencies, electron affinities, ionization potentials and dissociation energies of the title molecules in neutral, positively and negatively charged ions were studied by use of density functional method. The calculated results were compared with previous theoretical and experimental studies. Ground states for each molecule were assigned. It was found that for some molecules, low-lying state, in which the energy is much close to the ground state, was obtained. In this case, further studies both experimentally and theoretically are necessary in order to find the true global minimum.
Resumo:
The line emission peak of Eu2+ ion in crystal KMgF3 is at 360 nm. The probability of stimulated emission on 4f(7) (P-6(7/2))-> 4f(7)(S-8(7/2)) transition was predicted with a four-level decay model of Eu2+6P7/2 excited states proposed by the authors. Optic gain and net gain coefficient (g = 11.4 +/- 3.2)cm(-1) of 360 nm emission in crystal KMgF3 : Eu2+ were measured by ASE method, and the predication was proved by experiment. The net gain coefficient can be increased by annealing or doping crystal KMgF3 : Eu2+ with Gd3+ or Ce3+.
Resumo:
Sequential deprotonations of meso-(p-hydroxyphenyl)porphyrins (p-OHTPPH2) in DMF + H2O (V/V = 1:1) mixture have been verified to result in the appearance of hyperporphyrin spectra. However, when the deprotonations of these p-OHTPPH2 are carried out in DMF, the spectral changes differ considerably from those in the mixture mentioned above. At low [OH-], the optical spectra in the visible region are still considered to have characteristics of hyperporphyrin spectra. Further deprotonation at much higher basicity makes the optical spectra form three-banded spectra similar to those in the acidic solution. To clarify the molecular origins of these changes, UV-vis, resonance Raman (RR), proton nuclear magnetic resonance (H-1 NMR) experiments are carried out. Our data give evidence that p-OHTPPH2 in DMF can be further deprotonated of pyrrolic-H by higher concentrated NaOH, due to an aprotic medium like DMF effectively weakening the basicity of the porphyrin relative to that of the NaOH, and coordinates with two sodium ions (except the sodium ions that interact with the peripherial phenoxide anions) to form the sodium complexes of p-OHTPPH2 (Na2P, to lay a strong emphasis on the sodium ions that coordinate with the central nitrogen atom), which can be regarded as the porphyrin anions being perturbed by the sodium cations due to their highly ionic character.
Resumo:
A novel phosphor Sr2CeO4 was synthesized by the citrate-gel method. The results of XRD show that the temperature at which the crystallization starting is lowered and the soak time for complete crystallization is decreased. The values of pH of the precursor and the ratio( R) between the citrate and cation ions have an effect on the crystallization process. The host can transfer its exciting energy to rare earth ion Eu3+. The doped compound emits strong white light when the concentration of the doped Eu3+ is low. When that of Eu3+ is increased, it emits strong red light. The fluorescence from the higher excited states can be observed because the multiphonon relaxation probability between Eu3+ ions is low.
Resumo:
The multicolour three-photon resonant ionization spectra of U-238 were measured by using the pulsed dye lasers system synchronously pumped by a frequency doubled Nd:YAG-laser 532 nm output(operated at 10 Hz),a device for atomic beam of U, time-of-flight mass spectrometer and boxcar integrator. The dye laser pulses have a 6 ns duration. Beams from the dye lasers, which have the same polarization direction and are focused by lenses, entered an interaction chamber through opposite windows on a common axis and spatialy overlapped the U atomic beam. The optical pulse from dye laser DL2 was delayed to arrive at the interaction region 8 ns after the pulse from dye laser DL1; in the same way,the pulse from DL3 was delayed 8 ns after from DL2. The atomic beam device was made from stainless steel. We generated the U vapor by heating solid U in a graphite crucible by e-type electron -field on first excited states were studied in uranium atom. The question how to determine single-colour, two-colour and three-colour three-photon resonant ionization peak in the three-colour three-photon resonant ionization spectra diagram were solved.
Resumo:
Two approximate formulae to calculate the eigenvalues of pure quadrupole interaction in Mossbauer effect studies have been proposed and the eigenvalue coefficients in the formulae have been given for various excited states and ground states of the nucleus with different spin. All the eigenvalues of pure quadrupole interaction between both excited state and ground state of nucleus with spin I = 3/2 divided-by 9/2 and the electric-field gradient with different asymmetry parameter (eta = 0 divided-by 1.0) have been calculated by these formulae. The results show that the accuracies in all the calculations are more satisfactory or same in comparison with those obtained by the formula of Shenoy and Dunlap, especially when the asymmetry parameter of electric-field gradient is larger than 0.8 for the nucleus with spin I = 5/2.
Resumo:
The photodissociation o-dichlorobenzene at 266 nm has been investigated using the universal crossed molecular beam technique. Photofragment translational energy distribution P(E-t) and angular distribution of photofragments have been obtained and it is estimated that 23% of the available energy is assigned to translational energy. The anisotropy parameter is determined to be 0.4. From P(E-t) and beta we deduce that o-C6H4Cl2 photodissociation is a slow process. Ab initio calculation has been performed and it shows that the parent molecule has a larger geometry deformation in its excited states comparing with that of the ground state. The possible dissociation mechanism has also been proposed. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
It is known that the exact density functional must give ground-state energies that are piecewise linear as a function of electron number. In this work we prove that this is also true for the lowest-energy excited states of different spin or spatial symmetry. This has three important consequences for chemical applications: the ground state of a molecule must correspond to the state with the maximum highest-occupied-molecular-orbital energy, minimum lowest-unoccupied-molecular-orbital energy, and maximum chemical hardness. The beryllium, carbon, and vanadium atoms, as well as the CH(2) and C(3)H(3) molecules are considered as illustrative examples. Our result also directly and rigorously connects the ionization potential and electron affinity to the stability of spin states.
Resumo:
Localized molecular orbitals (LMOs) are much more compact representations of electronic degrees of freedom than canonical molecular orbitals (CMOs). The most compact representation is provided by nonorthogonal localized molecular orbitals (NOLMOs), which are linearly independent but are not orthogonal. Both LMOs and NOLMOs are thus useful for linear-scaling calculations of electronic structures for large systems. Recently, NOLMOs have been successfully applied to linear-scaling calculations with density functional theory (DFT) and to reformulating time-dependent density functional theory (TDDFT) for calculations of excited states and spectroscopy. However, a challenge remains as NOLMO construction from CMOs is still inefficient for large systems. In this work, we develop an efficient method to accelerate the NOLMO construction by using predefined centroids of the NOLMO and thereby removing the nonlinear equality constraints in the original method ( J. Chem. Phys. 2004 , 120 , 9458 and J. Chem. Phys. 2000 , 112 , 4 ). Thus, NOLMO construction becomes an unconstrained optimization. Its efficiency is demonstrated for the selected saturated and conjugated molecules. Our method for fast NOLMO construction should lead to efficient DFT and NOLMO-TDDFT applications to large systems.
Resumo:
Distorted-wave Born approximation calculations for Ps formation in positron impact on He, Ne, Ar, Kr and Xe are reported for the energy range up to 200 eV. Capture into the n = 1, 2 and 3 states of Ps is calculated explicitly and 1/n(3) scaling is used to estimate capture into states with n > 3. The calculations for the heavier noble gases allow for capture not only from the outer np(6) shell of the atom but also from the first inner ns(2) shell. However, the inner shell capture is found to be very small. Although by no means unambiguous, the calculations provide some support to the conjecture of Larrichia et al. [J. Phys. B 35 (2002) 2525] that the double peak and shoulder structures observed experimentally for Ps formation in Ar, Kr and Xe arise from formation in excited states. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Single- and multiphoton detachment rates have been calculated for K- using the R-matrix Floquet approach. Single-photon detachment rates, obtained at a laser field peak intensity of 10(9) W cm(-2), are discussed and compared with other theoretical work. Two-photon detachment rates at the same intensity have also been obtained, and similarities with results from earlier calculations for Li- and Na- are discussed. Three-photon rates are also presented at this laser intensity, and are compared and contrasted with those arising in the single-photon case, since both involve resonance structure with P-1(o) symmetry. The influence of resonances such as the 5s(2) S-1(e) doubly excited state and excitations of the residual atom are also considered.