989 resultados para DIGITAL-SKY-SURVEY
Resumo:
Why do people become archivists? Historically (and anecdotally) it was a deep love of musty, old records that drew people to the profession. While there have been many other motivating forces that inspired would-be archivists, it is most often that one hears of people seeking jobs in archives for love of “the stuff,” as evidenced in Kate Thiemer’s blog post, Honest tips for wannabe archivists (2012). As a result of the continually advancing presence of digitized and born digital archival collections, the physical nature of archival “stuff” is changing. While there remains the physical imprint of digital information on floppy disks, CDs, DVDs, hard drives, and old computers; the aspects of these physical artifacts might not evoke the same visceral pull to the profession as musty, raspy, paper-based documents. In light of this shift in physical presentation of information, we are faced with the question: how does love of archival “stuff” translate to work in digital archives? What is and/or will be the pull to become a digital archivist? To answer these questions, we will perform a survey-based study where we will invite archivists who work with both traditional and digital archival material to answer questions related to the aspects of their work that inspired or motivated them to join the profession. What motivates people to become archivists? What aspects of digital archives do or can potentially motivate people to seek out a career as an archivist? What, if any, motivational factors for becoming a traditional archivist are the same as those for becoming a digital archivist? What, if any, motivational factors for becoming a traditional archivist are different from those for becoming a digital archivist? By answering these questions, we hope to expand the archival discussion on what it means to be an archivist in the digital age. What compelling intrinsic, evidential, or informational values are present in digital archival content that will draw professionals to the field? Are there other values inherent in digital content that are currently unexplored? In our poster, we will present our discussion of the topic, our survey design, and results we have at the time of the Institute. Thiemer, K. (2012). Honest tips for wannabe archivists. Archivesnext blog. Retrieved from http://www.archivesnext.com/?p=2849
Resumo:
This Capstone represents a qualitative analysis of survey responses concerning river recreation management policies and techniques in the Western United States. Respondents were asked about management topics including permits and fees, monitoring, enforcement, resource management, recreational experience, and current and future demand for whitewater rafting. Responses with consistent results include those for questions concerning permits for commercial uses, justification of fees, and enforcement, while responses with variation in results were received for questions concerning permits for private uses, agency self-sufficiency, monitoring, and use capacity. Most respondents do not expect a significant increased demand for commercial or private boating in the next five years. Respondents that do expect an increase do not see a need for additional commercial outfitters.
Resumo:
Context. Young massive clusters are key to map the Milky Way’s structure, and near-infrared large area sky surveys have contributed strongly to the discovery of new obscured massive stellar clusters. Aims. We present the third article in a series of papers focused on young and massive clusters discovered in the VVV survey. This article is dedicated to the physical characterization of VVV CL086, using part of its OB-stellar population. Methods. We physically characterized the cluster using JHKS near-infrared photometry from ESO public survey VVV images, using the VVV-SkZ pipeline, and near-infrared K-band spectroscopy, following the methodology presented in the first article of the series. Results. Individual distances for two observed stars indicate that the cluster is located at the far edge of the Galactic bar. These stars, which are probable cluster members from the statistically field-star decontaminated CMD, have spectral types between O9 and B0 V. According to our analysis, this young cluster (1.0 Myr < age < 5.0 Myr) is located at a distance of 11+5-6 kpc, and we estimate a lower limit for the cluster total mass of (2.8+1.6-1.4) · 103 M⊙. It is likely that the cluster contains even earlier and more massive stars.
Resumo:
The Gaia-ESO Survey is a large public spectroscopic survey that aims to derive radial velocities and fundamental parameters of about 105 Milky Way stars in the field and in clusters. Observations are carried out with the multi-object optical spectrograph FLAMES, using simultaneously the medium-resolution (R ~ 20 000) GIRAFFE spectrograph and the high-resolution (R ~ 47 000) UVES spectrograph. In this paper we describe the methods and the software used for the data reduction, the derivation of the radial velocities, and the quality control of the FLAMES-UVES spectra. Data reduction has been performed using a workflow specifically developed for this project. This workflow runs the ESO public pipeline optimizing the data reduction for the Gaia-ESO Survey, automatically performs sky subtraction, barycentric correction and normalisation, and calculates radial velocities and a first guess of the rotational velocities. The quality control is performed using the output parameters from the ESO pipeline, by a visual inspection of the spectra and by the analysis of the signal-to-noise ratio of the spectra. Using the observations of the first 18 months, specifically targets observed multiple times at different epochs, stars observed with both GIRAFFE and UVES, and observations of radial velocity standards, we estimated the precision and the accuracy of the radial velocities. The statistical error on the radial velocities is σ ~ 0.4 km s-1 and is mainly due to uncertainties in the zero point of the wavelength calibration. However, we found a systematic bias with respect to the GIRAFFE spectra (~0.9 km s-1) and to the radial velocities of the standard stars (~0.5 km s-1) retrieved from the literature. This bias will be corrected in the future data releases, when a common zero point for all the set-ups and instruments used for the survey is be established.
Resumo:
The construction industry has long been considered as highly fragmented and non-collaborative industry. This fragmentation sprouted from complex and unstructured traditional coordination processes and information exchanges amongst all parties involved in a construction project. This nature coupled with risk and uncertainty has pushed clients and their supply chain to search for new ways of improving their business process to deliver better quality and high performing product. This research will closely investigate the need to implement a Digital Nervous System (DNS), analogous to a biological nervous system, on the flow and management of digital information across the project lifecycle. This will be through direct examination of the key processes and information produced in a construction project and how a DNS can provide a well-integrated flow of digital information throughout the project lifecycle. This research will also investigate how a DNS can create a tight digital feedback loop that enables the organisation to sense, react and adapt to changing project conditions. A Digital Nervous System is a digital infrastructure that provides a well-integrated flow of digital information to the right part of the organisation at the right time. It provides the organisation with the relevant and up-to-date information it needs, for critical project issues, to aid in near real-time decision-making. Previous literature review and survey questionnaires were used in this research to collect and analyse data about information management problems of the industry – e.g. disruption and discontinuity of digital information flow due to interoperability issues, disintegration/fragmentation of the adopted digital solutions and paper-based transactions. Results analysis revealed efficient and effective information management requires the creation and implementation of a DNS.
Resumo:
This raster layer represents surface elevation and bathymetry data for the Boston Region, Massachusetts. It was created by merging portions of MassGIS Digital Elevation Model 1:5,000 (2005) data with NOAA Estuarine Bathymetric Digital Elevation Models (30 m.) (1998). DEM data was derived from the digital terrain models that were produced as part of the MassGIS 1:5,000 Black and White Digital Orthophoto imagery project. Cellsize is 5 meters by 5 meters. Each cell has a floating point value, in meters, which represents its elevation above or below sea level.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Survey of the Mississippi River : made under the direction of the Mississippi River Commission : chart no. 76, projected from a trigonometrical survey made by the U.S. Coast Survey in 1874. It was published by the Mississippi River Commission ca. 1895. Scale 1:10,000. Covers the City of New Orleans and adjacent portions of Jefferson and St. Bernard Parishes. This layer is image 1 of 4 total images of the four sheet source map, representing the northeast portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Louisiana State Plane Coordinate System, South NAD83 (in Feet) (Fipszone 1702). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, railroads, canals, drainage, vegetation/ground cover, land ownership in outlying areas, selected public, private, and industrial buildings, parks, cemeteries, Parish boundaries, ferry routes and more. Relief shown by contours. Detailed depths of the Mississippi River shown with soundings and dates of survey, and survey control points. River banks and bottom soil types shown. Includes index chart, list of authorities, and notes. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Survey of the Mississippi River : made under the direction of the Mississippi River Commission : chart no. 76, projected from a trigonometrical survey made by the U.S. Coast survey in 1874. It was published by the Mississippi River Commission ca. 1895. Scale 1:10,000. Covers the City of New Orleans and adjacent portions of Jefferson and St. Bernard Parishes. This layer is image 2 of 4 total images of the four sheet source map, representing the southeast portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Louisiana State Plane Coordinate System, South NAD83 (in Feet) (Fipszone 1702). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, railroads, canals, drainage, vegetation/ground cover, land ownership in outlying areas, selected public, private, and industrial buildings, parks, cemeteries, Parish boundaries, ferry routes and more. Relief shown by contours. Detailed depths of the Mississippi River shown with soundings and dates of survey, and survey control points. River banks and bottom soil types shown. Includes index chart, list of authorities, and notes. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Survey of the Mississippi River : made under the direction of the Mississippi River Commission : chart no. 76, projected from a trigonometrical survey made by the U.S. Coast survey in 1874. It was published by the Mississippi River Commission ca. 1895. Scale 1:10,000. Covers the City of New Orleans and adjacent portions of Jefferson and St. Bernard Parishes. This layer is image 3 of 4 total images of the four sheet source map, representing the southwest portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Louisiana State Plane Coordinate System, South NAD83 (in Feet) (Fipszone 1702). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, railroads, canals, drainage, vegetation/ground cover, land ownership in outlying areas, selected public, private, and industrial buildings, parks, cemeteries, Parish boundaries, ferry routes and more. Relief shown by contours. Detailed depths of the Mississippi River shown with soundings and dates of survey, and survey control points. River banks and bottom soil types shown. Includes index chart, list of authorities, and notes. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Survey of the Mississippi River : made under the direction of the Mississippi River Commission : chart no. 76, projected from a trigonometrical survey made by the U.S. Coast survey in 1874. It was published by the Mississippi River Commission ca. 1895. Scale 1:10,000. Covers the City of New Orleans and adjacent portions of Jefferson and St. Bernard Parishes. This layer is image 4 of 4 total images of the four sheet source map, representing the northwest portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Louisiana State Plane Coordinate System, South NAD83 (in Feet) (Fipszone 1702). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, railroads, canals, drainage, vegetation/ground cover, land ownership in outlying areas, selected public, private, and industrial buildings, parks, cemeteries, Parish boundaries, ferry routes and more. Relief shown by contours. Detailed depths of the Mississippi River shown with soundings and dates of survey, and survey control points. River banks and bottom soil types shown. Includes index chart, list of authorities, and notes. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic quadrangle map of Barnstable, Massachusetts. The edition date is 1893 and the map was reprinted in 1907. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map. The names of quadrangles which border this one appear on the map collar in their respective positions (N,S,E,W) in relation to this map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic quadrangle map of Barre, Massachusetts. The suvery (ground condition) date is 1887, the edition date is March, 1894 and the map was reprinted in 1942. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map. The names of quadrangles which border this one appear on the map collar in their respective positions (N,S,E,W) in relation to this map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic quadrangle map of Becket, Massachusetts. The survey (ground condition) date is 1886. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map. The names of quadrangles which border this one appear on the map collar in their respective positions (N,S,E,W) in relation to this map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Belchertown, Massachusetts quadrangle. The suvey (ground condition) dates are 1885 and 1887; the edition date is November, 1893. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map. The names of quadrangles which border this one appear on the map collar in their respective positions (N,S,E,W) in relation to this map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic quadrangle map entitled Berlin, (N.Y.) which also shows towns and features in Massachusetts. The survey dates (ground condition) for this map are 1885-88, and the edition date is 1890. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map. The names of quadrangles which border this one appear on the map collar in their respective positions (N,S,E,W) in relation to this map.