968 resultados para DIAMETER DISTRIBUTION
Resumo:
The use of laser beams as excitation sources for the characterization of semiconductor nanowires (NWs) is largely extended. Raman spectroscopy and photoluminescence (PL) are currently applied to the study of NWs. However, NWs are systems with poor thermal conductivity and poor heat dissipation, which result in unintentional heating under the excitation with a focused laser beam with microscopic size, as those usually used in microRaman and microPL experiments. On the other hand, the NWs have subwavelength diameter, which changes the optical absorption with respect to the absorption in bulk materials. Furthermore, the NW diameter is smaller than the laser beam spot, which means that the optical power absorbed by the NW depends on its position inside the laser beam spot. A detailed analysis of the interaction between a microscopic focused laser beam and semiconductor NWs is necessary for the understanding of the experiments involving laser beam excitation of NWs. We present in this work a numerical analysis of the thermal transport in Si NWs, where the heat source is the laser energy locally absorbed by the NW. This analysis takes account of the optical absorption, the thermal conductivity, the dimensions, diameter and length of the NWs, and the immersion medium. Both free standing and heat-sunk NWs are considered. Also, the temperature distribution in ensembles of NWs is discussed. This analysis intends to constitute a tool for the understanding of the thermal phenomena induced by laser beams in semiconductor NWs.
Resumo:
Through the use of the Distributed Fiber Optic Temperature Measurement (DFOT) method, it is possible to measure the temperature in small intervals (on the order of centimeters) for long distances (on the order of kilometers) with a high temporal frequency and great accuracy. The heat pulse method consists of applying a known amount of heat to the soil and monitoring the temperature evolution, which is primarily dependent on the soil moisture content. The use of both methods, which is called the active heat pulse method with fiber optic temperature sensing (AHFO), allows accurate soil moisture content measurements. In order to experimentally study the wetting patterns, i.e. shape, size, and the water distribution, from a drip irrigation emitter, a soil column of 0.5 m of diameter and 0.6 m high was built. Inside the column, a fiber optic cable with a stainless steel sheath was placed forming three concentric helixes of diameters 0.2 m, 0.4 m and 0.6 m, leading to a 148 measurement point network. Before, during, and after the irrigation event, heat pulses were performed supplying electrical power of 20 W/m to the steel. The soil moisture content was measured with a capacitive sensor in one location at depths of 0.1 m, 0.2 m, 0.3 m and 0.4 m during the irrigation. It was also determined by the gravimetric method in several locations and depths before and right after the irrigation. The emitter bulb dimensions and shape evolution was satisfactorily measured during infiltration. Furthermore, some bulb's characteristics difficult to predict (e.g. preferential flow) were detected. The results point out that the AHFO is a useful tool to estimate the wetting pattern of drip irrigation emitters in soil columns and show a high potential for its use in the field.
Resumo:
The cell concentration and size distribution of the microalgae Nannochloropsis gaditana were studied over the whole growth process. Various samples were taken during the light and dark periods the algae were exposed to. The distributions obtained exhibited positive skew, and no change in the type of distribution was observed during the growth process. The size distribution shifted to lower diameters in dark periods while in light periods the opposite occurred. The overall trend during the growth process was one where the size distribution shifted to larger cell diameters, with differences between initial and final distributions of individual cycles becoming smaller. A model based on the Logistic model for cell concentration as a function of time in the dark period that also takes into account cell respiration and growth processes during dark and light periods, respectively, was proposed and successfully applied. This model provides a picture that is closer to the real growth and evolution of cultures, and reveals a clear effect of light and dark periods on the different ways in which cell concentration and diameter evolve with time.
Resumo:
Sediment samples were obtained for detailed Adenosine 5'-Triphosphate (ATP) analysis down to 57.8 m below the seafloor (mbsf). The samples were also analyzed for particle-size distribution, calcium carbonate (CaCO3), organic carbon, and total nitrogen. The concentrations of ATP ranged between 360 and 7050 pg/g (dry weight sediment), which agree well with a limited number of direct bacteria counts. Principal component analyses show that 63% of the total variance can be accounted for by the first two principal components. The concentration of ATP (bacterial numbers by inference) is virtually independent of the concentration of sedimentary organic carbon, but correlates with CaCO3 and coarse particles.
Resumo:
Pesticides in soil are subject to a number of processes that result in transformation and biodegradation, sorption to and desorption from soil components, and diffusion and leaching. Pesticides leaching through a soil profile will be exposed to changing environmental conditions as different horizons with distinct physical, chemical and biological properties are encountered. The many ways in which soil properties influence pesticide retention and degradation need to be addressed to allow accurate predictions of environmental fate and the potential for groundwater pollution. Degradation and sorption processes were investigated in a long-term (100 days) study of the chloroacetanilide herbicide, acetochlor. Soil cores were collected from a clay soil profile and samples taken from 0-30cm (surface), 1.0-1.3m (mid) and 2.7-3.0m (deep) and treated with acetochlor (2.5, 1.25, 0.67 mu g acetochlor g(-1) dry wt soil, respectively). In sterile and non-sterile conditions, acetochlor concentration in the aqueous phase declined rapidly from the surface and subsoil layers, predominantly through nonextractable residue (NER) formation on soil surfaces, but also through biodegradation and biotic transformation. Abiotic transformation was also evident in the sterile soils. Several metabolites were produced, including acetochlor-ethane sulphonic acid and acetochlor-oxanilic acid. Transformation was principally microbial in origin, as shown by the differences between non-sterile and sterile soils. NER formation increased rapidly over the first 21 days in all soils and was mainly associated with the macroaggregate (> 2000 mu m diameter) size fractions. It is likely that acetochlor is incorporated into the macroaggregates through oxidative coupling, as humification of particulate organic matter progresses. The dissipation (ie total loss of acetochlor) half-life values were 9.3 (surface), 12.3 (mid) and 12.6 days (deep) in the non-sterile soils, compared with 20.9 [surface], 23.5 [mid], and 24 days [deep] in the sterile soils, demonstrating the importance of microbially driven processes in the rapid dissipation of acetochlor in soil.
Resumo:
The Australian lungfish Neoceratodus forsteri (Dipnoi) is an ancient fish that has a unique phylogenetic relationship among the basal Sarcopterygii. Here we examine the ultrastructure, histochemistry, and distribution of the retinal photoreceptors using a combination of light and electron microscopy in order to determine the characteristics of the photoreceptor layer in this living fossil. Similar proportions of rods (53%) and cones (47%) reveal that N. forsteri optimizes both scotopic and photopic sensitivity according to its visual demands. Scotopic sensitivity is optimized by a tapetum lucidum and extremely large rods (18.62 +/- 2.68 mu m ellipsoid diameter). Photopic sensitivity is optimized with a theoretical spatial resolving power of 3.28 +/- 0.66 cycles degree(-1), which is based on the spacing of at least three different cone types: a red cone containing a red oil droplet, a yellow cone containing a yellow ellipsoidal pigment, and a colorless cone containing multiple clear oil droplets. Topographic analysis reveals a heterogeneous distribution of all photoreceptor types, with peak cone densities predominantly found in temporal retina (6,020 rods MM 2, 4,670 red cones mm(-2), 900 yellow cones mm(-2), and 320 colorless cones mm(-2)), but ontogenetic changes in distribution are revealed. Spatial resolving power and the diameter of all photoreceptor types (except yellow cones) increases linearly with growth. The presence of at least three morphological types of cones provides the potential for color vision, which could play a role in the clearer waters of its freshwater environment.
Resumo:
Various hypotheses could explain the relationship between beta-amyloid (Abeta) deposition and the vasculature in Alzheimer's disease (AD). Amyloid deposition may reduce capillary density, affect endothelial cells of blood vessels, result in diffusion from blood vessels, or interfere with the perivascular clearance mechanism. Hence, the spatial pattern of the classic ('cored') type of Abeta deposit was studied in the upper laminae (I,II/III) of the superior frontal gyrus in nine cases of sporadic AD (SAD). Sections were immunostained with antibodies against Abeta and with collagen IV to study the relationships between the spatial distribution of the classic deposits and the blood vessel profiles. Both the classic deposits and blood vessel profiles were distributed in clusters. In all cases, there was a positive spatial correlation between the clusters of the classic deposits and the larger diameter (>10 microm) blood vessel profiles and especially the vertically penetrating arterioles. In only 1 case, was there a significant spatial correlation between the clusters of the classic deposits and the smaller diameter (<10 microm) capillaries. There were no negative correlations between the density of Abeta deposits and the smaller diameter capillaries. In 9/11 cases, the clusters of the classic deposits were significantly larger than those of the clusters of the larger blood vessel profiles. In addition, the density of the classic deposits declined as a negative exponential function with distance from a vertically penetrating arteriole. These results suggest that the classic Abeta deposits cluster around the larger blood vessels in the upper laminae of the frontal cortex. This aggregation could result from diffusion of proteins from blood vessels or from overloading the system of perivascular clearance from the brain.
Resumo:
The spatial distribution of the diffuse, primitive, and classic amyloid-beta deposits was studied in the upper laminae of the superior frontal gyrus in cases of sporadic Alzheimer disease (AD). Amyloid-beta-stained tissue was counterstained with collagen IV to determine whether the spatial distribution of the amyloid-beta deposits along the cortex was related to blood vessels. In all patients, amyloid-beta deposits and blood vessels were aggregated into distinct clusters and in many patients, the clusters were distributed with a regular periodicity along the cortex. The clusters of diffuse and primitive deposits did not coincide with the clusters of blood vessels in most patients. However, the clusters of classic amyloid-beta deposits coincided with those of the large diameter (>10 microm) blood vessels in all patients and with clusters of small-diameter (< 10 microm) blood vessels in four patients. The data suggest that, of the amyloid-beta subtypes, the clusters of classic amyloid-beta deposits appear to be the most closely related to blood vessels and especially to the larger-diameter, vertically penetrating arterioles in the upper cortical laminae.