999 resultados para DFIG dynamics
Resumo:
In tropical forests, natural disturbance creates opportunities for species to claim previously utilized space and resources and is considered an important mechanism in the maintenance of species diversity. However, ecologists have long recognized that disturbance also promotes exotic plant invasions. Cyclones cause extensive defoliation, loss of major branches and multiple tree falls, resulting in a significantly more open canopy and increased light and heat levels in the understorey. The widespread and massive disturbance caused by cyclones provides ideal conditions for rapid recruitment and spread of invasive species. The ecological roles of invasive species in rainforest habitats following such a severe disturbance are poorly understood. Severe category 4 Cyclone Larry crossed the North Queensland coast in March 2006 causing massive disturbance to rainforest habitats from Tully to Cairns and west to the Atherton Tablelands. We established 10 plots in an area extensively damaged by this cyclone near El Arish in North Queensland. On each plot nine 2 × 2 m quadrats were established with three quadrats per plot in each of the following treatments: (i) complete debris removal down to the soil layer, (ii) removal of coarse woody debris only, and (iii) uncleared. We monitored recruitment, growth and mortality of all native and invasive species in the 90 quadrats every 3 months since the cyclone. Here we present the recruitment dynamics of invasive species across the study area in relation to the level of disturbance, the type of quadrat treatment, and the diversity and abundance of the native recruiting flora over the first 12 months post-cyclone. Our results suggest that invasive species will mostly comprise a transient component of the flora in the early stages of the successional response. However, some species may have longer-term effects on the successional trajectory of the rainforest and future forest composition and structure.
Resumo:
The response of grasslands to disturbance varies with the nature of the disturbance and the productivity of the landscape. In highly productive grasslands, competitive exclusion often results in decreased species richness and grazing may allow more species to coexist. Once widespread, grasslands dominated by Dichanthium sericeum (Queensland bluegrass) and Astrebla spp. (Mitchell grass) occur on fertile plains but have been reduced in extent by cultivation. We tested the effects of exclusion of livestock grazing on these grasslands by comparing the floristic composition of sites in a nature reserve with an adjacent stock reserve. In addition, sites that had been cultivated within the nature reserve were compared with those where grazing but no cultivation had occurred. To partition the effects of temporal variation from spatial variation we sampled sites in three different years (1998, 2002 and 2004). Some 194 taxa were recorded at the nature reserve and surrounding stock routes. Sampling time, the occurrence of past cultivation and livestock grazing all influenced species composition. Species richness varied greatly between sampling periods relating to highly variable rainfall and water availability on heavy clay soils. Native species richness was significantly lower at previously cultivated sites (13-22 years after cultivation), but was not significantly influenced by grazing exclusion. After 8 years it appears that reintroducing disturbance in the form of livestock grazing is not necessary to maintain plant species richness in the reserve. The highly variable climate (e.g. droughts) probably plays an important role in the coexistence of species by negating competitive exclusion and allowing interstitial species to persist.
Resumo:
The effects of the hydrological regime on temporal changes to physical characteristics of substratum habitat, sediment texture of surface sediments (<10 cm), were investigated in a sub-tropical headwater stream over four years. Surface discharge was measured together with vertical hydraulic gradient and groundwater depth in order to explore features of sediment habitat that extend beyond the streambed surface. Whilst the typical discharge pattern was one of intermittent base flows and infrequent flow events associated with monsoonal rain patterns, the study period also encompassed a drought and a one-in-a-hundred-year flood. Rainfall and discharge did not necessarily reflect the actual conditions in the stream. Although surface waters were persistent long after discharge ceased, the streambed was completely dry on several occasions. Shallow groundwater was present at variable depths throughout the study period, being absent only at the height of the drought. The streambed sediments were mainly gravels, sand and clay. Finer sediment fractions showed a marked change in grain size over time, although bedload movement was limited to a single high discharge event. In response to a low discharge regimen (drought), sediments characteristically showed non-normal distributions and were dominated by finer materials. A high-energy discharge event produced a coarsening of sands and a diminished clay fraction in the streambed. Particulate organic matter from sediments showed trends of build-up and decline with the high and low discharge regimes, respectively. Within the surface sediment intersticies three potential categories of invertebrate habitat were recognised, each with dynamic spatial and temporal boundaries.
Resumo:
The neural basis of visual perception can be understood only when the sequence of cortical activity underlying successful recognition is known. The early steps in this processing chain, from retina to the primary visual cortex, are highly local, and the perception of more complex shapes requires integration of the local information. In Study I of this thesis, the progression from local to global visual analysis was assessed by recording cortical magnetoencephalographic (MEG) responses to arrays of elements that either did or did not form global contours. The results demonstrated two spatially and temporally distinct stages of processing: The first, emerging 70 ms after stimulus onset around the calcarine sulcus, was sensitive to local features only, whereas the second, starting at 130 ms across the occipital and posterior parietal cortices, reflected the global configuration. To explore the links between cortical activity and visual recognition, Studies II III presented subjects with recognition tasks of varying levels of difficulty. The occipito-temporal responses from 150 ms onwards were closely linked to recognition performance, in contrast to the 100-ms mid-occipital responses. The averaged responses increased gradually as a function of recognition performance, and further analysis (Study III) showed the single response strengths to be graded as well. Study IV addressed the attention dependence of the different processing stages: Occipito-temporal responses peaking around 150 ms depended on the content of the visual field (faces vs. houses), whereas the later and more sustained activity was strongly modulated by the observers attention. Hemodynamic responses paralleled the pattern of the more sustained electrophysiological responses. Study V assessed the temporal processing capacity of the human object recognition system. Above sufficient luminance, contrast and size of the object, the processing speed was not limited by such low-level factors. Taken together, these studies demonstrate several distinct stages in the cortical activation sequence underlying the object recognition chain, reflecting the level of feature integration, difficulty of recognition, and direction of attention.
Resumo:
second moment measurements are carried out on [(CH,),N], CdI, in the temperature range 77 to 400 K. The results are interpreted based on a molecular dynamical model of randomly reorienting methyl groups and isotropically tumbling tetramethyl ammonium group. The relaxation data show contributions from spin-rotation interaction at high temperatures and presence of inequivalent methyl groups. The correlation times and associated activation energies, connected with this model, are calculated from the data. The structure in the absorption line and in the free-induction decay signal at 77 K indicates the possibility of tunnelling motion of the methyl groups. Im Temperaturbereich 77 bis 400 K werden an [(CH,),N],CdI, Protonen-Spin-Gitter-Relaxationsexperimente (bei Larmorfrequenzen von 10,20 und 30 MHz) und Messungen des zweiten Moments durchgefiihrt. Die Ergebnisse werden an Hand eines molekularen dynamischen Modells sich statistisch umorientierender Methylgruppen und isotrop taumelnder Tetramethyl-Ammoniumgruppen interpretiert. Die Relaxationswerte zeigen Beitriige von Spin-Rotations-Wechselwirkung bei hohen Temperaturen und die Anwesenheit von inaquivalenten Methylgruppen. Die Korrelationszeiten und verknupften Aktivierungsenergien, die mit diesem Model1 verbunden sind, werden am den Werten berechnet. Die Struktur in der Absorptionslinie und im Abklingsignal der freien Induktion bei 77 K zeigt die Moglichkeit einer Tunnelbewegung der Methylgruppen.
Resumo:
This paper describes a study to identify those factors which control the persistence of the Subtropical legume Stylosanthes hippocampoides, formerly S. guianensis cv. Oxley (fine stem stylo). The dynamics of S. hippocampoides populations was recorded in permanent quadrats at 2 stocking rates in a grazing study conducted between 1987 and 1992 in south-eastern Queensland. Density of mature plants fluctuated between 10 and 60 plants/m(2) during the 5 years with the major contributing factors being variations in seedling recruitment and survival, which, in turn, reflected the size of the soil seed bank and seasonal rainfall. Plant density was consistently higher at the lower stocking rate of 1 beast/1.5 ha compared with 1 beast/1 ha; however, the effect of stocking rate was minor compared with fluctuation due to seasonal variation in rainfall. The maximum life span of the original plants exceeded 5 years, while the survival of seedling cohorts was strongly impacted by seasonal rainfall. Total exclosure from grazing during summer increased the size of the soil seed bank although a precise time period during summer was not identified, while grazing at the lower stocking pressure produced the same outcome. It was concluded that the large seasonal variation that occurs in S. hippocampoides density is driven by large seasonal variation in seedling recruitment, which, in turn, is influenced by the size of the soil seed bank.
Resumo:
Ferroelectric phase transition in ammonium sulfate has been studied by ESR of CrO43- radical substituting for SO42- ion in (NH4)2SO4. In addition to discontinuous changes at Tc, certain continuous changes are observed in ESR parameters of this probe below Tc, which reflect the role of the sulfate ion in the phase transition. A microscopic mechanism of the phase transition is proposed and discussed in terms of the change of orientation of the sulfate tetrahedron through a finite angle. The degree of the change of orientation below Tc is thought to be the possible order parameter of the phase transition.
Resumo:
Bemisia tabaci, biotype B, commonly known as the silverleaf whitefly (SLW) is an alien species that invaded Australia in the mid-90s. This paper reports on the invasion ecology of SLW and the factors that are likely to have contributed to the first outbreak of this major pest in an Australian cotton cropping system, population dynamics of SLW within whitefly-susceptible crop (cotton and cucurbit) and non-crop vegetation (sowthistle, Sonchus spp.) components of the cropping system were investigated over four consecutive growing seasons (September-June) 2001/02-2004/05 in the Emerald Irrigation Area (EIA) of Queensland, Australia. Based on fixed geo-referenced sampling sites, variation in spatial and temporal abundance of SLW within each system component was quantified to provide baseline data for the development of ecologically sustainable pest management strategies. Parasitism of large (3rd and 4th instars) SLW nymphs by native aphelinid wasps was quantified to determine the potential for natural control of SLW populations. Following the initial outbreak in 2001/02, SLW abundance declined and stabilised over the next three seasons. The population dynamics of SLW is characterised by inter-seasonal population cycling between the non-crop (weed) and cotton components of the EIA cropping system. Cotton was the largest sink for and source of SLW during the study period. Over-wintering populations dispersed from weed host plant sources to cotton in spring followed by a reverse dispersal in late summer and autumn to broad-leaved crops and weeds. A basic spatial source-sink analysis showed that SLW adult and nymph densities were higher in cotton fields that were closer to over-wintering weed sources throughout spring than in fields that were further away. Cucurbit fields were not significant sources of SLW and did not appear to contribute significantly to the regional population dynamics of the pest. Substantial parasitism of nymphal stages throughout the study period indicates that native parasitoid species and other natural enemies are important sources of SLW mortality in Australian cotton production systems. Weather conditions and use of broad-spectrum insecticides for pest control are implicated in the initial outbreak and on-going pest status of SLW in the region.
Resumo:
Seed persistence is poorly quantified for invasive plants of subtropical and tropical environments and Lantana camara, one of the world's worst weeds, is no exception. We investigated germination, seedling emergence, and seed survival of two lantana biotypes (Pink and pink-edged red [PER]) in southeastern Queensland, Australia. Controlled experiments were undertaken in 2002 and repeated in 2004, with treatments comprising two differing environmental regimes (irrigated and natural rainfall) and sowing depths (0 and 2 cm). Seed survival and seedling emergence were significantly affected by all factors (time, biotype, environment, sowing depth, and cohort) (P < 0.001). Seed dormancy varied with treatment (environment, sowing depth, biotype, and cohort) (P < 0.001), but declined rapidly after 6 mo. Significant differential responses by the two biotypes to sowing depth and environment were detected for both seed survival and seedling emergence (P < 0.001). Seed mass was consistently lower in the PER biotype at the population level (P < 0.001), but this variation did not adequately explain the differential responses. Moreover, under natural rainfall the magnitude of the biotype effect was unlikely to result in ecologically significant differences. Seed survival after 36 mo under natural rainfall ranged from 6.8 to 21.3%. Best fit regression analysis of the decline in seed survival over time yielded a five-parameter exponential decay model with a lower asymptote approaching −0.38 (% seed survival = [( 55 − (−0.38)) • e (k • t)] + −0.38; R2 = 88.5%; 9 df). Environmental conditions and burial affected the slope parameter or k value significantly (P < 0.01). Seed survival projections from the model were greatest for buried seeds under natural rainfall (11 yr) and least under irrigation (3 yr). Experimental data and model projections suggest that lantana has a persistent seed bank and this should be considered in management programs, particularly those aimed at eradication.
Resumo:
The emphasis on collegiality and collaboration in the literature on teachers' work and school reform has tended to underplay the significance of teacher autonomy. This thesis explores the dynamics of teachers' understandings and experiences of individual teacher autonomy (as contrasted with collective autonomy) in an independent school in Queensland which promoted itself as a 'teachers' school' with a strong commitment to individual teacher autonomy. The research was a case study which drew on methodological signposts from critical, feminist and traditional ethnography. Intensive fieldwork in the school over five months incorporated the ethnographic techniques of observation, interviews and document analysis. Teachers at Thornton College understood their experience of individual autonomy at three interrelated levels--in terms of their work in the classroom, their working life in the school, and their voice in the decision-making processes of the school. They felt that they experienced a great deal of individual autonomy at each of these three levels. These understandings and experiences of autonomy were encumbered or enabled by a range of internal and external stakeholder groups. There were also a number of structural influences (community perceptions, market forces, school size, time and bureaucracy) emerging from the economic, social and political structures in Australian society which influenced the experience of autonomy by teachers. The experience of individual teacher autonomy was constantly shifting, but there were some emergent patterns. Consensus on educational goals and vision, and strong expressions of trust and respect between teachers and stakeholders in the school, characterised the contexts in which teachers felt they experienced high levels of autonomy in their work. The demand for accountability and desire for relatedness motivated stakeholders and structural forces to influence teacher autonomy. Some significant gaps emerged between the rhetoric of a commitment to individual teacher autonomy and decision-making practices in the school, that gave ultimate power to the co-principals. Despite the rhetoric and promotion of non-hierarchical structures and collaborative decision-making processes, many teachers perceived that their experience of individual autonomy remained subject to the exercise of 'partial democracy' by school leaders.
Resumo:
Wild European rabbits are a serious problem to agriculture in Australia, with an estimated annual cost of A$ 113 million. Biological control agents (myxomatosis and rabbit haemorrhagic disease virus) have caused large and sustained declines in rabbit populations throughout Australia. A simulation model incorporates these diseases as well as warren destruction as methods of controlling rabbit populations in Queensland, north eastern Australia. These diseases reduced populations by 90-99% and the combination of these and warren destruction led to 100% control in simulations at six sites across southern Queensland. Increasing monthly pasture growth by 15% had little effect on simulated populations whereas a 15% decrease reduced populations by 0-50%. An increase in temperature of 2.5 °C would lead to a 15-60% decrease in populations. These effects suggest that climate change will lead to a decrease in the population of rabbits in Queensland and a retraction in the northern limit of their distribution in Australia.
Resumo:
Maintenance of green leaf area during grain filling can increase grain yield of sorghum grown under terminal water limitation. This 'stay-green' trait has been related to the nitrogen (N) supply-demand balance during grain filling. This study quantifies the N demand of grain and N translocation rates from leaves and stem and explores effects of genotype and N stress on onset and rate of leaf senescence during the grain filling period. Three hybrids differing in potential height were grown at three levels of N supply under well-watered conditions. Vertical profiles of biomass, leaf area, and N% of leaves, stem and grain were measured at regular intervals. Weekly SPAD chlorophyll readings on main shoot leaves were correlated with observed specific leaf nitrogen (SLN) to derive seasonal patterns of leaf N content. For all hybrids, individual grain N demand was sink determined and was initially met through N translocation from the stem and rachis. Only if this was insufficient did leaf N translocation occur. Maximum N translocation rates from leaves and stem were dependent on their N status. However, the supply of N at canopy scale was also related to the amount of leaf area senescing at any one time. This supply-demand framework for N dynamics explained effects of N stress and genotype on the onset and rate of leaf senescence.
Resumo:
Stay-green, an important trait for grain yield of sorghum grown under water limitation, has been associated with a high leaf nitrogen content at the start of grain filling. This study quantifies the N demand of leaves and stems and explores effects of N stress on the N balance of vegetative plant parts of three sorghum hybrids differing in potential crop height. The hybrids were grown under well-watered conditions at three levels of N supply. Vertical profiles of biomass and N% of leaves and stems, together with leaf size and number, and specific leaf nitrogen (SLN), were measured at regular intervals. The hybrids had similar minimum but different critical and maximum SLN, associated with differences in leaf size and N partitioning, the latter associated with differences in plant height. N demand of expanding new leaves was represented by critical SLN, and structural stem N demand by minimum stem N%. The fraction of N partitioned to leaf blades increased under N stress. A framework for N dynamics of leaves and stems is developed that captures effects of N stress and genotype on N partitioning and on critical and maximum SLN.