997 resultados para DESENVOLVIMENTO REGIONAL
Resumo:
Cultural heritage has arousing the interest of the general public (e.g. tourists), resulting in the increasing number of visitations to archaeological sites. However, many buildings and monuments are severely damaged or completely destroyed, which doesn’t allow to get a full experience of “travelling in time”. Over the years, several Augmented Reality (AR) approaches were proposed to overcome these issues by providing three-dimensional visualization of reconstructed ancient structures in situ. However, most of these systems were made available through heavy and expensive technological bundles. Alternatively, MixAR intends to be a lightweight and cost-effective Mixed Reality system which aims to provide the visualization of virtual ancient buildings reconstructions in situ, properly superimposed and aligned with real-world ruins. This paper proposes and compares different AR mobile units setups to be used in the MixAR system, with low-cost and lightweight requirements in mind, providing different levels of immersion. It was propounded four different mobile units, based on: a laptop computer, a single-board computer (SBC), a tablet and a smartphone, which underwent a set of tests to evaluate their performances. The results show that mobile units based on laptop computer and SBC reached a good overall performance while mobile units based on tablet and smartphone did not meet such a satisfactory result even though they are acceptable for the intended use.
Resumo:
Archeology and related areas have a special interest on cultural heritage sites since they provide valuable information about past civilizations. However, the ancient buildings present in these sites are commonly found in an advanced state of degradation which difficult the professional/expert analysis. Virtual reconstructions of such buildings aim to provide a digital insight of how these historical places could have been in ancient times. Moreover, the visualization of such models has been explored by some Augmented Reality (AR) systems capable of providing support to experts. Their compelling and appealing environments have also been applied to promote the social and cultural participation of general public. The existing AR solutions regarding this thematic rarely explore the potential of realism, due to the following lacks: the exploration of mixed environments is usually only supported for indoors or outdoors, not both in the same system; the adaptation of the illumination conditions to the reconstructed structures is rarely addressed causing a decrease of credibility. MixAR [1] is a system concerned with those challenges, aiming to provide the visualization of virtual buildings augmented upon real ruins, allowing soft transitions among its interiors and exteriors and using relighting techniques for a faithful interior illumination, while the user freely moves in a given cultural heritage site, carrying a mobile unit. Regarding the focus of this paper, we intend to report the current state of MixAR mobile unit prototype, which allows visualizing virtual buildings – properly aligned with real-world structures – based on user's location, during outdoor navigation. In order to evaluate the prototype performance, a set of tests were made using virtual models with different complexities.
Resumo:
Poly(vinylidene fluoride-co-chlorotrifluoroethylene) – P(VDF-CTFE) membranes are increasingly interesting for a wide range of applications, including battery separators, filtration membranes and biomedical applications. This work reports on the morphology, hydrophobicity, thermal and mechanical properties variation of P(VDF-CTFE) membranes processed by nonsolvent induced phase separation technique (NIPS) as a function of the main processing parameters. All membranes show a porous structure composed of large spherulites, (interconnected) micropores and/or microvoids depending on the processing conditions used that in turn affect their hydrophobicity and mechanical properties. The degree of crystallinity of the membranes remains approximately constant with a value of about 15 %, except for the membranes immediately immersed in ethanol, which is of about 23 %. In turn, the crystalline phases present in the copolymer is mainly affected by the temperature and nonsolvent characteristics of the coagulation bath, the β-phase content ranging from 33 to 100 %, depending on those processing parameters. It was show that the temperature of water-based coagulation bath plays an important role in order to produce structurally uniform and homogeneous porous membranes, which is particularly important from the point of view of technological applications.
Resumo:
Novel multifunctional porous films have been developed by the integration of magnetic CoFe2O4 (CFO) nanoparticles into poly(vinylidene fluoride)-Trifuoroethylene (P(VDF-TrFE)), taking advantage of the synergies of the magnetostrictive filler and the piezoelectric polymer. The porous films show a piezoelectric response with an effective d33 coefficient of -22 pC/N-1, a maximum magnetization of 12 emu.g-1 and a maximum magnetoelectric coefficient of 9 mV.cm-1.Oe-1. In this way, a multifunctional membrane has been developed suitable for advanced applications ranging from biomedical to water treatment.
Resumo:
One important component with particular relevance in battery performance is the cathode, being one of the main responsible elements for cell capacity and cycle life. Carbon coated lithium iron phosphate, C-LiFePO4, active material is one of the most promising cathode materials for the next generation of large scale lithium ion battery applications and strong research efforts are being devoted to it, due to its excellent characteristics, including high capacity, ~170 mAh/g, and safety. This review summarizes the main developments on C-LiFePO4 based cathode film preparation and performance. The effect of the binder, conductive additive, relationship between active material-binder-conductive additive and drying step, in the electrode film fabrication and performance is presented and discussed. Finally, after the presentation of the cell types fabricated with C-LiFePO4 active material and their performance, some conclusions and guidelines for further investigations are outlined.
Resumo:
Tissue engineering often rely on scaffolds for supporting cell differentiation and growth. Novel paradigms for tissue engineering include the need of active or smart scaffolds in order to properly regenerate specific tissues. In particular, as electrical and electromechanical clues are among the most relevant ones in determining tissue functionality in tissues such as muscle and bone, among others, electroactive materials and, in particular, piezoelectric ones, show strong potential for novel tissue engineering strategies, in particular taking also into account the existence of these phenomena within some specific tissues, indicating their requirement also during tissue regeneration. This referee reports on piezoelectric materials used for tissue engineering applications. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and a start point for novel research pathways in the most relevant and challenging open questions.
Resumo:
The manipulation of electric ordering with applied magnetic fields has been realized on magnetoelectric (ME) materials, however, their ME switching is often accompanied by significant hysteresis and coercivity that represents, for some applications, a severe weakness. To overcome this obstacle, this work focus on the development of a new type of ME polymer nanocomposites that exhibits tailored ME response at room temperature. The multiferroic nanocomposites are based on three different ferrite nanoparticles, Zn0.2Mn0.8Fe2O4 (ZMFO), CoFe2O4 (CFO) and Fe3O4 (FO), dispersed in a piezoelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE), matrix. No substantial differences were detected on the time-stable piezoelectric response of the composites (≈ -28 pC.N−1) with distinct ferrite fillers and for the same ferrite content of 10wt.%. Magnetic hysteresis loops from pure ferrite nanopowders showed different magnetic responses. ME results of the nanocomposite films with 10wt.% ferrite content revealed that the ME induced voltage increases with increasing DC magnetic field until a maximum of 6.5 mV∙cm−1∙Oe−1, at an optimum magnetic field of 0.26 T, and 0.8 mV∙cm−1∙Oe−1, at an optimum magnetic field of 0.15T, for the CFO/P(VDF-TrFE) and FO/P(VDF-TrFE) composites, respectively. On the contrary, the ME response of the ZMFO/P(VDF-TrFE) exposed no hysteresis and high dependence on the ZMFO filler content. Possible innovative applications such as memories and information storage, signal processing, ME sensors and oscillators have been addressed for such ferrite/PVDF nanocomposites.
Resumo:
The last decade has witnessed an increased research effort on multi-phase magnetoelectric (ME) composites. In this scope, this paper presents the application of novel materials for the development of anisotropic magnetoelectric (ME) sensors based on δ-FeO(OH)/P(VDF-TrFE) composites. The composite is able to precisely determine the amplitude and direction of the magnetic field. A new ME effect is reported in this study, as it emerges from the magnetic rotation of the δ-FeO(OH) nanosheets inside the piezoelectric P(VDF-TrFE) polymer matrix. δ-FeO(OH)/P(VDF-TrFE) composites with 1, 5, 10 and 20 δ-FeO(OH) filler weigh percentage in three δ-FeO(OH) alignment states (random, transversal and longitudinal) have been developed. Results shown that the modulus of the piezoelectric response (10-24 pC.N-1) is stable at least up to three months, the shape and magnetization maximum value (3 emu.g-1) is dependent on δ-FeO(OH) content and the obtained ME voltage coefficient, with a maximum of ≈0.4 mV.cm-1.Oe-1, is dependent on the incident magnetic field direction and intensity. In this way, the produced materials are suitable for innovative anisotropic sensor and actuator applications.
Resumo:
Polymer based scintillator composites have been fabricated by combining poly(vinylidene fluoride) (PVDF) and Gd2O3:Eu nanoparticles (50nm). PVDF has been used since it is a flexible and stable binder matrix and highly resistance to thermal and light deterioration. Gd2O3:Eu has been selected as scintillator material due to its wide band gap, high density and suitable visible light yield. The structural, mechanical, thermal and electrical characteristics of the composites were studied as a function of filler content, together with their performance as scintillator material. The introduction of Gd2O3:Eu nanoparticles into the PVDF matrix does not influence the morphology of the polymer or the degree of crystallinity. On the other hand, an increase of the Young´s modulus with respect to PVDF matrix is observed for filler contents of 0.1-0.75 wt.%. The introduction of Gd2O3:Eu into the PVDF matrix increases dielectric constant and DC electrical conductivity as well as the visible light yield in the nanocomposite, being this increase dependent upon Gd2O3:Eu content and X-ray input power. In this way, Gd2O3:Eu/PVDF composites shows suitable characteristics to be used as X-ray radiation transducers, in particular for large area applications.
Resumo:
There is an increasing interest in thin and flexible energy storage devices to meet modern society needs for applications such as, radio frequency sensing, interactive packaging and other consumer products. Printed batteries comply these requirements and are an excellent alternative to conventional batteries for many applications. Flexible and micro-batteries are also included in the area of printed batteries whenever fabricated by printing technologies. The main characteristics, advantages, disadvantages, developments, and printing techniques of printed batteries are presented and discussed in this review. The state-of-art takes into account both the research and industrial levels. In the academic one, the research progress of printed batteries is summarized divided in lithium-ion battery (Li-ion), zinc-manganese dioxide (Zn-MnO2), and other battery types with emphasis on the different materials for anode, cathode and separator as well as in the battery design. With respect to the industrial state-of-art, materials, device formulations and manufacturing techniques are presented. Finally, the prospects and challenges of printed batteries are discussed.
Resumo:
It is successfully demonstrated that nanoparticle’s magnetostriction can be accurately determined based on the magnetoelectric effect measured on polymeric-composite materials. This represents a novel, simple and versatile method for the determination of particle’s magnetostriction at their nano-sized and dispersed state, which is, up to date, a difficult and imprecise task.
Resumo:
Electroactive polymers are one of the most interesting class of polymers used as smart materials in various applications, such as the development of sensors and actuators for biomedical applications in areas such as smart prosthesis, implantable biosensors and biomechanical signal monitoring, among others. For acquiring or applying the electrical signal from/to the piezoelectric material, suitable electrodes can be produced from Ti based coatings with tailored multifunctional properties, conductivity and antibacterial characteristics, through Ag inclusions. This work reports on Ag-TiNx electrodes, deposited by d. c. and pulsed magnetron sputtering at room temperature on poly(vinylidene fluoride), PVDF, the all-round best piezoelectric polymer.. Composition of the electrodes was assessed by microanalysis X-ray system (EDS - energy dispersive spectrometer). The XRD results revealed that the deposition conditions preserve the polymer structure and suggested the presence of crystalline fcc-TiN phase and fcc-Ag phase in samples with N2 flow above 3 sccm. According to the results obtained from SEM analysis, the coatings are homogeneous and Ag clusters were found for samples with nitrogen flow above 3 sccm. With increasing nitrogen flow, the sheet resistivity tend to be lower than the samples without nitrogen, leading also to a decrease of the piezoelectric response. It is concluded that the deposition conditions do significantly affect the piezoelectric polymer, which maintain its characteristics for sensor/actuator applications.
Resumo:
In this work the dielectric properties and ferromagnetic resonance of Polyvinylidene- uoride embedded with 10 wt. % of NiFe2O4 or Ni0.5Zn0.5Fe2O4 nanoparticles are presented. The mechanisms of the dielectric relaxation in these two composites do not differ from each other. For more precise characterization of the dielectric relaxation, a two dimensional distribution of relaxation times was calculated from the temperature dependencies of the complex dielectric permittivity. The results obtained from the 2D distribution and the mean relaxation time are found to be consistent. The dynamics of the dielectric permittivity is described by the Arrhenius law. The energy and attempt time of the dielectric relaxators lie in a narrow energy and time region thus proving that the single type chains of polymer are responsible for a dispersion. The magnetic properties of the composites were investigated using the fer- romagnetic resonance. A single resonance line was observed for both samples. From the temperature dependence (100 K - 310 K) of the resonance eld and linewidth, the origin of the observed line was attributed to the NiFe2O4 and Ni0.5Zn0.5Fe2O4 superparamagnetic nanoparticles. By measuring lms at dif- ferent orientations with respect to the external magnetic eld, the angular dependence of the resonance was observed, indicating the magnetic dipolar in-plane interactions.
Resumo:
Polymer blends based on poly(vinylidene fluoride), PVDF and poly(ethylene oxide), PEO, with varying compositions have been prepared by solvent casting, the polymer blend films being obtained from solutions in dimethyl formamide at 70ºC. Under these conditions PVDF crystallizes from solution while PEO remains in the molten state. Then, PEO crystallizes from the melt confined by PVDF crystalls during cooling to room temperature. PVDF crystallized from DMF solutions adopt predominantly the electroactive β-phase (85%). Nevertheless when PEO is introduced in the polymer blend the β-phase content decreases slightly to 70%. The piezoelectric coefficient (d33) in pristine PVDF is -5 pC/N and decreases with increasing PEO content in the PVDF/PEO blends. Blend morphology, observed by electron and atomic force microscopy, shows the confinement of PEO between the already formed PVDF crystals. On the other hand the sample contraction when PEO is extracted from the blend with water (which is not a solvent for PVDF) allows proving the co-continuity of both phases in the blend. PEO crystallization kinetics have been characterized by DSC both in isothermal and cooling scans experiments showing important differences in crystalline fraction and crystallization rate with sample composition.
Resumo:
Composite films with filler microparticles of Barium ferrite dispersed within P(VDF-TrFE) as polymeric matrix have been prepared by solvent evaporation. The lowest BaFO content of 1% wt acts as a small defect within the polymeric matrix, reducing the values of the dielectric and mechanical properties of the pure P(VDF-TrFE). For filler contents up to a 20%, the BaFO filler reinforces the matrix and measured properties increase their values. This trend is not followed by the electrical conductivity. We extended the study to fibers composed by BaFe12O19 microparticles in a PVDF matrix. Due to the big size of BaFO particles (1 micron in diameter), proper fabrication of the fiber shaped composites has not been achieved. We found that true BaFO content are always lower than nominal ones. Results are discussed in terms of the influence of size and morphology of the BaFO particles on the initial properties of the polymeric matrix.