992 resultados para Cyber-networks
Resumo:
This submission addresses the following terms of reference: 1) the nature, prevalence and level of cybersafety risks and threats experienced by senior Australians; 2) the impact and implications of those risks and threats on access and use of information and communication technologies by senior Australians; 3) the adequacy and effectiveness of current government and industry initiatives to respond to those threats, including education initiatives aimed at senior Australians; 4) best practice safeguards, and any possible changes to Australian law, policy or practice that will strengthen the cybersafety of senior Australians.
Resumo:
Process bus networks are the next stage in the evolution of substation design, bringing digital technology to the high voltage switchyard. Benefits of process buses include facilitating the use of Non-Conventional Instrument Transformers, improved disturbance recording and phasor measurement and the removal of costly, and potentially hazardous, copper cabling from substation switchyards and control rooms. This paper examines the role a process bus plays in an IEC 61850 based Substation Automation System. Measurements taken from a process bus substation are used to develop an understanding of the network characteristics of "whole of substation" process buses. The concept of "coherent transmission" is presented and the impact of this on Ethernet switches is examined. Experiments based on substation observations are used to investigate in detail the behavior of Ethernet switches with sampled value traffic. Test methods that can be used to assess the adequacy of a network are proposed, and examples of the application and interpretation of these tests are provided. Once sampled value frames are queued by an Ethernet switch the additional delay incurred by subsequent switches is minimal, and this allows their use in switchyards to further reduce communications cabling, without significantly impacting operation. The performance and reliability of a process bus network operating with close to the theoretical maximum number of digital sampling units (merging units or electronic instrument transformers) was investigated with networking equipment from several vendors, and has been demonstrated to be acceptable.
Resumo:
Airports and cities inevitably recognise the value that each brings the other; however, the separation in decision-making authority for what to build, where, when and how provides a conundrum for both parties. Airports often want a say in what is developed outside of the airport fence, and cities often want a say in what is developed inside the airport fence. Defining how much of a say airports and cities have in decisions beyond their jurisdictional control is likely to be a topic that continues so long as airports and cities maintain separate formal decision-making processes for what to build, where, when and how. However, the recent Green and White Papers for a new National Aviation Policy have made early inroads to formalising relationships between Australia’s major airports and their host cities. At present, no clear indication (within practice or literature) is evident to the appropriateness of different governance arrangements for decisions to develop in situations that bring together the opposing strategic interests of airports and cities; thus leaving decisions for infrastructure development as complex decision-making spaces that hold airport and city/regional interests at stake. The line of enquiry is motivated by a lack of empirical research on networked decision-making domains outside of the realm of institutional theorists (Agranoff & McGuire, 2001; Provan, Fish & Sydow, 2007). That is, governance literature has remained focused towards abstract conceptualisations of organisation, without focusing on the minutia of how organisation influences action in real-world applications. A recent study by Black (2008) has provided an initial foothold for governance researchers into networked decision-making domains. This study builds upon Black’s (2008) work by aiming to explore and understand the problem space of making decisions subjected to complex jurisdictional and relational interdependencies. That is, the research examines the formal and informal structures, relationships, and forums that operationalise debates and interactions between decision-making actors as they vie for influence over deciding what to build, where, when and how in airport-proximal development projects. The research mobilises a mixture of qualitative and quantitative methods to examine three embedded cases of airport-proximal development from a network governance perspective. Findings from the research provide a new understanding to the ways in which informal actor networks underpin and combine with formal decision-making networks to create new (or realigned) governance spaces that facilitate decision-making during complex phases of development planning. The research is timely, and responds well to Isett, Mergel, LeRoux, Mischen and Rethemeyer’s (2011) recent critique of limitations within current network governance literature, specifically to their noted absence of empirical studies that acknowledge and interrogate the simultaneity of formal and informal network structures within network governance arrangements (Isett et al., 2011, pp. 162-166). The combination of social network analysis (SNA) techniques and thematic enquiry has enabled findings to document and interpret the ways in which decision-making actors organise to overcome complex problems for planning infrastructure. An innovative approach to using association networks has been used to provide insights to the importance of the different ways actors interact with one another, thus providing a simple yet valuable addition to the increasingly popular discipline of SNA. The research also identifies when and how different types of networks (i.e. formal and informal) are able to overcome currently known limitations to network governance (see McGuire & Agranoff, 2011), thus adding depth to the emerging body of network governance literature surrounding limitations to network ways of working (i.e. Rhodes, 1997a; Keast & Brown, 2002; Rethemeyer & Hatmaker, 2008; McGuire & Agranoff, 2011). Contributions are made to practice via the provision of a timely understanding of how horizontal fora between airports and their regions are used, particularly in the context of how they reframe the governance of decision-making for airport-proximal infrastructure development. This new understanding will enable government and industry actors to better understand the structural impacts of governance arrangements before they design or adopt them, particularly for factors such as efficiency of information, oversight, and responsiveness to change.
Resumo:
This paper outlines a method for studying online activity using both qualitative and quantitative methods: topical network analysis. A topical network refers to "the collection of sites commenting on a particular event or issue, and the links between them" (Highfield, Kirchhoff, & Nicolai, 2011, p. 341). The approach is a complement for the analysis of large datasets enabling the examination and comparison of different discussions as a means of improving our understanding of the uses of social media and other forms of online communication. Developed for an analysis of political blogging, the method also has wider applications for other social media websites such as Twitter.
Resumo:
The act of computer programming is generally considered to be temporally removed from a computer program's execution. In this paper we discuss the idea of programming as an activity that takes place within the temporal bounds of a real-time computational process and its interactions with the physical world. We ground these ideas within the con- text of livecoding -- a live audiovisual performance practice. We then describe how the development of the programming environment "Impromptu" has addressed our ideas of programming with time and the notion of the programmer as an agent in a cyber-physical system.
Resumo:
The act of computer programming is generally considered to be temporally removed from a computer program’s execution. In this paper we discuss the idea of programming as an activity that takes place within the temporal bounds of a real-time computational process and its interactions with the physical world. We ground these ideas within the context of livecoding – a live audiovisual performance practice. We then describe how the development of the programming environment “Impromptu” has addressed our ideas of programming with time and the notion of the programmer as an agent in a cyber-physical system.
Resumo:
The article informs on a research that analyzes the views of the stakeholders on the conditions required for the effective working on the clinical networks and the outcomes that marks the success of the networks. It is mentioned that clinical networks work to improve the health care access and outcome by undertaking innovations and projects based on local requirements. The factors for the success of clinical networks include building relationships, effective leadership and strategic workplans.
Resumo:
The purpose of this article is to describe a project with one Torres Strait Islander Community. It provides some insights into parents’ funds of knowledge that are mathematical in nature, such as sorting shells and giving fish. The idea of funds of knowledge is based the premise that people are competent and have knowledge that has been historically and culturally accumulated into a body of knowledge and skills essential for their functioning and well-being. This knowledge is then practised throughout their lives and passed onto the next generation of children. Through using a community research approach, funds of knowledge that can be used to validate the community’s identities as knowledgeable people, can be used as foundations for future learnings for teachers, parents and children in the early years of school. They can be the bridge that joins a community’s funds of knowledge with schools validating that knowledge.
Resumo:
Secure communications in wireless sensor networks operating under adversarial conditions require providing pairwise (symmetric) keys to sensor nodes. In large scale deployment scenarios, there is no prior knowledge of post deployment network configuration since nodes may be randomly scattered over a hostile territory. Thus, shared keys must be distributed before deployment to provide each node a key-chain. For large sensor networks it is infeasible to store a unique key for all other nodes in the key-chain of a sensor node. Consequently, for secure communication either two nodes have a key in common in their key-chains and they have a wireless link between them, or there is a path, called key-path, among these two nodes where each pair of neighboring nodes on this path have a key in common. Length of the key-path is the key factor for efficiency of the design. This paper presents novel deterministic and hybrid approaches based on Combinatorial Design for deciding how many and which keys to assign to each key-chain before the sensor network deployment. In particular, Balanced Incomplete Block Designs (BIBD) and Generalized Quadrangles (GQ) are mapped to obtain efficient key distribution schemes. Performance and security properties of the proposed schemes are studied both analytically and computationally. Comparison to related work shows that the combinatorial approach produces better connectivity with smaller key-chain sizes.
Resumo:
A Delay Tolerant Network (DTN) is one where nodes can be highly mobile, with long message delay times forming dynamic and fragmented networks. Traditional centralised network security is difficult to implement in such a network, therefore distributed security solutions are more desirable in DTN implementations. Establishing effective trust in distributed systems with no centralised Public Key Infrastructure (PKI) such as the Pretty Good Privacy (PGP) scheme usually requires human intervention. Our aim is to build and compare different de- centralised trust systems for implementation in autonomous DTN systems. In this paper, we utilise a key distribution model based on the Web of Trust principle, and employ a simple leverage of common friends trust system to establish initial trust in autonomous DTN’s. We compare this system with two other methods of autonomously establishing initial trust by introducing a malicious node and measuring the distribution of malicious and fake keys. Our results show that the new trust system not only mitigates the distribution of fake malicious keys by 40% at the end of the simulation, but it also improved key distribution between nodes. This paper contributes a comparison of three de-centralised trust systems that can be employed in autonomous DTN systems.
Resumo:
Deploying networked control systems (NCSs) over wireless networks is becoming more and more popular. However, the widely-used transport layer protocols, Transmission Control Protocol (TCP) and User Datagram Protocol (UDP), are not designed for real-time applications. Therefore, they may not be suitable for many NCS application scenarios because of their limitations on reliability and/or delay performance, which real-control systems concern. Considering a typical type of NCSs with periodic and sporadic real-time traffic, this paper proposes a highly reliable transport layer protocol featuring a packet loss-sensitive retransmission mechanism and a prioritized transmission mechanism. The packet loss-sensitive retransmission mechanism is designed to improve the reliability of all traffic flows. And the prioritized transmission mechanism offers differentiated services for periodic and sporadic flows. Simulation results show that the proposed protocol has better reliability than UDP and improved delay performance than TCP over wireless networks, particularly when channel errors and congestions occur.
Resumo:
Reliable communications is one of the major concerns in wireless sensor networks (WSNs). Multipath routing is an effective way to improve communication reliability in WSNs. However, most of existing multipath routing protocols for sensor networks are reactive and require dynamic route discovery. If there are many sensor nodes from a source to a destination, the route discovery process will create a long end-to-end transmission delay, which causes difficulties in some time-critical applications. To overcome this difficulty, the efficient route update and maintenance processes are proposed in this paper. It aims to limit the amount of routing overhead with two-tier routing architecture and introduce the combination of piggyback and trigger update to replace the periodic update process, which is the main source of unnecessary routing overhead. Simulations are carried out to demonstrate the effectiveness of the proposed processes in improvement of total amount of routing overhead over existing popular routing protocols.
Resumo:
This chapter presents a comparative survey of recent key management (key distribution, discovery, establishment and update) solutions for wireless sensor networks. We consider both distributed and hierarchical sensor network architectures where unicast, multicast and broadcast types of communication take place. Probabilistic, deterministic and hybrid key management solutions are presented, and we determine a set of metrics to quantify their security properties and resource usage such as processing, storage and communication overheads. We provide a taxonomy of solutions, and identify trade-offs in these schemes to conclude that there is no one-size-fits-all solution.
Resumo:
Grouping users in social networks is an important process that improves matching and recommendation activities in social networks. The data mining methods of clustering can be used in grouping the users in social networks. However, the existing general purpose clustering algorithms perform poorly on the social network data due to the special nature of users' data in social networks. One main reason is the constraints that need to be considered in grouping users in social networks. Another reason is the need of capturing large amount of information about users which imposes computational complexity to an algorithm. In this paper, we propose a scalable and effective constraint-based clustering algorithm based on a global similarity measure that takes into consideration the users' constraints and their importance in social networks. Each constraint's importance is calculated based on the occurrence of this constraint in the dataset. Performance of the algorithm is demonstrated on a dataset obtained from an online dating website using internal and external evaluation measures. Results show that the proposed algorithm is able to increases the accuracy of matching users in social networks by 10% in comparison to other algorithms.
Resumo:
Key distribution is one of the most challenging security issues in wireless sensor networks where sensor nodes are randomly scattered over a hostile territory. In such a sensor deployment scenario, there will be no prior knowledge of post deployment configuration. For security solutions requiring pairwise keys, it is impossible to decide how to distribute key pairs to sensor nodes before the deployment. Existing approaches to this problem are to assign more than one key, namely a key-chain, to each node. Key-chains are randomly drawn from a key-pool. Either two neighboring nodes have a key in common in their key-chains, or there is a path, called key-path, among these two nodes where each pair of neighboring nodes on this path has a key in common. Problem in such a solution is to decide on the key-chain size and key-pool size so that every pair of nodes can establish a session key directly or through a path with high probability. The size of the key-path is the key factor for the efficiency of the design. This paper presents novel, deterministic and hybrid approaches based on Combinatorial Design for key distribution. In particular, several block design techniques are considered for generating the key-chains and the key-pools.