911 resultados para Curvature parabola


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use Bayesian model selection techniques to test extensions of the standard flat LambdaCDM paradigm. Dark-energy and curvature scenarios, and primordial perturbation models are considered. To that end, we calculate the Bayesian evidence in favour of each model using Population Monte Carlo (PMC), a new adaptive sampling technique which was recently applied in a cosmological context. The Bayesian evidence is immediately available from the PMC sample used for parameter estimation without further computational effort, and it comes with an associated error evaluation. Besides, it provides an unbiased estimator of the evidence after any fixed number of iterations and it is naturally parallelizable, in contrast with MCMC and nested sampling methods. By comparison with analytical predictions for simulated data, we show that our results obtained with PMC are reliable and robust. The variability in the evidence evaluation and the stability for various cases are estimated both from simulations and from data. For the cases we consider, the log-evidence is calculated with a precision of better than 0.08. Using a combined set of recent CMB, SNIa and BAO data, we find inconclusive evidence between flat LambdaCDM and simple dark-energy models. A curved Universe is moderately to strongly disfavoured with respect to a flat cosmology. Using physically well-motivated priors within the slow-roll approximation of inflation, we find a weak preference for a running spectral index. A Harrison-Zel'dovich spectrum is weakly disfavoured. With the current data, tensor modes are not detected; the large prior volume on the tensor-to-scalar ratio r results in moderate evidence in favour of r=0.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uncertainties associated with the structural model and measured vibration data may lead to unreliable damage detection. In this paper, we show that geometric and measurement uncertainty cause considerable problem in damage assessment which can be alleviated by using a fuzzy logic-based approach for damage detection. Curvature damage factor (CDF) of a tapered cantilever beam are used as damage indicators. Monte Carlo simulation (MCS) is used to study the changes in the damage indicator due to uncertainty in the geometric properties of the beam. Variation in these CDF measures due to randomness in structural parameter, further contaminated with measurement noise, are used for developing and testing a fuzzy logic system (FLS). Results show that the method correctly identifies both single and multiple damages in the structure. For example, the FLS detects damage with an average accuracy of about 95 percent in a beam having geometric uncertainty of 1 percent COV and measurement noise of 10 percent in single damage scenario. For multiple damage case, the FLS identifies damages in the beam with an average accuracy of about 94 percent in the presence of above mentioned uncertainties. The paper brings together the disparate areas of probabilistic analysis and fuzzy logic to address uncertainty in structural damage detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The object of this dissertation is to study globally defined bounded p-harmonic functions on Cartan-Hadamard manifolds and Gromov hyperbolic metric measure spaces. Such functions are constructed by solving the so called Dirichlet problem at infinity. This problem is to find a p-harmonic function on the space that extends continuously to the boundary at inifinity and obtains given boundary values there. The dissertation consists of an overview and three published research articles. In the first article the Dirichlet problem at infinity is considered for more general A-harmonic functions on Cartan-Hadamard manifolds. In the special case of two dimensions the Dirichlet problem at infinity is solved by only assuming that the sectional curvature has a certain upper bound. A sharpness result is proved for this upper bound. In the second article the Dirichlet problem at infinity is solved for p-harmonic functions on Cartan-Hadamard manifolds under the assumption that the sectional curvature is bounded outside a compact set from above and from below by functions that depend on the distance to a fixed point. The curvature bounds allow examples of quadratic decay and examples of exponential growth. In the final article a generalization of the Dirichlet problem at infinity for p-harmonic functions is considered on Gromov hyperbolic metric measure spaces. Existence and uniqueness results are proved and Cartan-Hadamard manifolds are considered as an application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mechanics based linear analysis of the problem of dynamic instabilities in slender space launch vehicles is undertaken. The flexible body dynamics of the moving vehicle is studied in an inertial frame of reference, including velocity induced curvature effects, which have not been considered so far in the published literature. Coupling among the rigid-body modes, the longitudinal vibrational modes and the transverse vibrational modes due to asymmetric lifting-body cross-section are considered. The model also incorporates the effects of aerodynamic forces and the propulsive thrust of the vehicle. The effects of the coupling between the combustion process (mass variation, developed thrust etc.) and the variables involved in the flexible body dynamics (displacements and velocities) are clearly brought out. The model is one-dimensional, and it can be employed to idealised slender vehicles with complex shapes. Computer simulations are carried out using a standard eigenvalue problem within h-p finite element modelling framework. Stability regimes for a vehicle subjected to propulsive thrust are validated by comparing the results from published literature. Numerical simulations are carried out for a representative vehicle to determine the instability regimes with vehicle speed and propulsive thrust as the parameters. The phenomena of static instability (divergence) and dynamic instability (flutter) are observed. The results at low Mach number match closely with the results obtained from previous models published in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The system CS2 + CH3NO2 shows β=0.315±0.004 over 10-6<ε=|T-Tc| / Tc<2�10-1 with no indication of a classical value ½ even far away from Tc. The diameter shows a curvature and is of the form �c+b ε+fε7 / 8exp(-gεh).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the singular surface theory, an expression for the jump in vorticity across a shock wave of arbitrary shape propagating in a uniform, perfect fluid occupying the space-time of special relativity, has been derived. It has been shown that the jump in vorticity across a shock of given strength and curvature depends only on the velocity of the medium ahead of the shock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thickness measurements derived from optical coherence tomography (OCT) images of the eye are a fundamental clinical and research metric, since they provide valuable information regarding the eye’s anatomical and physiological characteristics, and can assist in the diagnosis and monitoring of numerous ocular conditions. Despite the importance of these measurements, limited attention has been given to the methods used to estimate thickness in OCT images of the eye. Most current studies employing OCT use an axial thickness metric, but there is evidence that axial thickness measures may be biased by tilt and curvature of the image. In this paper, standard axial thickness calculations are compared with a variety of alternative metrics for estimating tissue thickness. These methods were tested on a data set of wide-field chorio-retinal OCT scans (field of view (FOV) 60° x 25°) to examine their performance across a wide region of interest and to demonstrate the potential effect of curvature of the posterior segment of the eye on the thickness estimates. Similarly, the effect of image tilt was systematically examined with the same range of proposed metrics. The results demonstrate that image tilt and curvature of the posterior segment can affect axial tissue thickness calculations, while alternative metrics, which are not biased by these effects, should be considered. This study demonstrates the need to consider alternative methods to calculate tissue thickness in order to avoid measurement error due to image tilt and curvature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a detailed study of the structure of turbulence in boundary layers along mildly curved convex and concave surfaces. The surface curvature studied corresponds to δ/Rw = ± 0·01, δ being the boundary-layer thickness and Rw the radius of curvature of the wall, taken as positive for convex and negative for concave curvature. Measurements of turbulent energy balance, autocorrelations, auto- and cross-power spectra, amplitude probability distributions and conditional correlations are reported. It is observed that even mild curvature has very strong effects on the various aspects of the turbulent structure. For example, convex curvature suppresses the diffusion of turbulent energy away from the wall, reduces drastically the integral time scales and shifts the spectral distributions of turbulent energy and Reynolds shear stress towards high wavenumbers. Exactly opposite effects, though generally of a smaller magnitude, are produced by concave wall curvature. It is also found that curvature of either sign affects the v fluctuations more strongly than the u fluctuations and that curvature effects are more significant in the outer region of the boundary layer than in the region close to the wall. The data on the conditional correlations are used to study, in detail, the mechanism of turbulent transport in curved boundary layers. (Published Online April 12 2006)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental investigation of the mean flow characteristics of two-dimensional turbulent boundary layers over surfaces of mild longitudinal curvature is reported. The study covered both convex and concave walls of \d/Rw I « 0.013 (d being the boundary-layer thickness and Rw being the wall radius). It was found that, whereas the region close to the wall was not affected significantly by wall curvature, the outer region was very sensitive to even mild wall curvature. A detailed study of the wake region using present and other available data suggests a systematic effect of b/Rw on the wake structure. The paper also discusses in detail the effect of mild wall curvature on the boundary-layer development with particular emphasis on the difference in behavior of the boundary layer at short and long distances from the leading edge of the curved wall, an aspect which has not received sufficient attention in previous experimental investigations. An attempt has been made to explain this behavior from a consideration of the structure of turbulence in boundary layers over curved surfaces taken into account.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The system CS2 + CH3NO2 shows β=0.315±0.004 over 10-6<ε=|T-Tc| / Tc<2-10-1 with no indication of a classical value ½ even far away from Tc. The diameter shows a curvature and is of the form - c+b ε+fε7 / 8exp(-gεh).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivated by a problem from fluid mechanics, we consider a generalization of the standard curve shortening flow problem for a closed embedded plane curve such that the area enclosed by the curve is forced to decrease at a prescribed rate. Using formal asymptotic and numerical techniques, we derive possible extinction shapes as the curve contracts to a point, dependent on the rate of decreasing area; we find there is a wider class of extinction shapes than for standard curve shortening, for which initially simple closed curves are always asymptotically circular. We also provide numerical evidence that self-intersection is possible for non-convex initial conditions, distinguishing between pinch-off and coalescence of the curve interior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using the method of operators of multiple scales, two coupled nonlinear equations are derived, which govern the slow amplitude modulation of surface gravity waves in two space dimensions. The equations of Davey and Stewartson, which also govern the two-dimensional modulation of the amplitude of gravity waves, are derived as a special case of our equations. For a fully dispersed wave, symmetric about a point which moves with the group velocity, the coupled equations reduce to a nonlinear Schrödinger equation with extra terms representing the effect of the curvature of the wavefront.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Texas Orocline is a prominent orogenic curvature that developed during the early Permian in the southern New England Orogen. Outliers preserving lower Permian sedimentary successions (Bondonga, Silver Spur, Pikedale, Terrica, Alum Rock and Ashford beds) approximately outline the oroclinal structure, but the tectonic processes responsible for the development of these basinal successions, and their relationships to the Texas Orocline, are unclear. Here we address this shortcoming by providing new U–Pb detrital and primary zircon ages from these successions, as well as detailed stratigraphic and structural data from the largest exposed succession (Bondonga beds). Field observations and U–Pb geochronological data suggest that the lower Permian successions in the Texas Orocline are remnants of a single, formerly larger basin that was deposited after ca 302 Ma. Time constraints for formation of this basin are correlative with constraints from the lower Permian Nambucca Block, which was likely deposited in response to regional back-arc extension during and/or after the development of the Texas Orocline. The conclusion that the lower Permian sedimentary basins in the Texas Orocline belong to this back-arc extensional system supports the suggestion that oroclinal bending in the New England Orogen was primarily controlled by trench retreat and associated overriding-plate extension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gravity critical speeds of rotors have hitherto been studied using linear analysis, and ascribed to rotor stiffness asymmetry. Here, we study an idealized asymmetric nonlinear overhung rotor model of Crandall and Brosens, spinning close to its gravity critical speed.Nonlinearities arise from finite displacements, and the rotor's staticlateral deflection under gravity is taken as small. Assuming small asymmetry and damping, slow modulations of whirl amplitudes are studied using the method of multiple scales. Inertia asymmetry appears only at second order. More interestingly, even without stiffness asymmetry, the gravity-induced resonance survives through geometric nonlinearities. The gravity resonant forcing does not influence the resonant mode at leading order, unlike the typical resonant oscillations. Nevertheless,the usual phenomena of resonances, namely saddle-node bifurcations, jump phenomena and hysteresis, are all observed. An unanticipated periodic solution branch is found. In the three-dimensional space oftwo modal coefficients and a detuning parameter, the full set of periodic solutions is found to be an imperfect version of three mutually intersecting curves: a straight line,a parabola and an ellipse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Wavefront-guided Laser-assisted in situ keratomileusis (LASIK) is a widespread and effective surgical treatment for myopia and astigmatic correction but whether it induces higher-order aberrations remains controversial. The study was designed to evaluate the changes in higher-order aberrations after wavefront-guided ablation with IntraLase femtosecond laser in moderate to high astigmatism. Methods Twenty-three eyes of 15 patients with moderate to high astigmatism (mean cylinder, −3.22 ± 0.59 dioptres) aged between 19 and 35 years (mean age, 25.6 ± 4.9 years) were included in this prospective study. Subjects with cylinder ≥ 1.5 and ≤2.75 D were classified as moderate astigmatism while high astigmatism was ≥3.00 D. All patients underwent a femtosecond laser–enabled (150-kHz IntraLase iFS; Abbott Medical Optics Inc) wavefront-guided ablation. Uncorrected (UDVA), corrected (CDVA) distance visual acuity in logMAR, keratometry, central corneal thickness (CCT) and higher-order aberrations (HOAs) over a 6 mm pupil, were assessed before and 6 months, postoperatively. The relationship between postoperative change in HOA and preoperative mean spherical equivalent refraction, mean astigmatism, and postoperative CCT were tested. Results At the last follow-up, the mean UDVA was increased (P < 0.0001) but CDVA remained unchanged (P = 0.48) and no eyes lost ≥2 lines of CDVA. Mean spherical equivalent refraction was reduced (P < 0.0001) and was within ±0.50 D range in 61 % of eyes. The average corneal curvature was flatter by 4 D and CCT was reduced by 83 μm (P < 0.0001, for all), postoperatively. Coma aberrations remained unchanged (P = 0.07) while the change in trefoil (P = 0.047) postoperatively, was not clinically significant. The 4th order HOAs (spherical aberration and secondary astigmatism) and the HOA root mean square (RMS) increased from −0.18 ± 0.07 μm, 0.04 ± 0.03 μm and 0.47 ± 0.11 μm, preoperatively, to 0.33 ± 0.19 μm (P = 0.004), 0.21 ± 0.09 μm (P < 0.0001) and 0.77 ± 0.27 μm (P < 0.0001), six months postoperatively. The change in spherical aberration after the procedure increased with an increase in the degree of preoperative myopia. Conclusions Wavefront-guided IntraLASIK offers a safe and effective option for vision and visual function improvement in astigmatism. Although, reduction of HOA is possible in a few eyes, spherical-like aberrations are increased in majority of the treated eyes.