997 resultados para Cretaceous of Brasil
Resumo:
The complete Paleocene section begins with the basal Tertiary Globigerina eugubina Zone. This zone occurs at 465A-3-3, 4 cm to 465A-3-3, 144 cm and belongs to Lithologic Unit I (Site 465 report, this volume), a homogeneous, white, moderately to highly disturbed nannofossil ooze.
Resumo:
Broken Ridge, in the eastern Indian Ocean, is a shallow-water volcanic platform which formed during the Early to middle Cretaceous at which time it comprised the northern portion of the Kerguelen-Heard Plateau. Rifting during the middle Eocene and subsequent seafloor spreading has moved Broken Ridge about 20?N to its present location. The sedimentary section of Broken Ridge includes Turonian-lower Eocene limestone and chalk with volcanic ash, an interval of detrital sands and gravels associated with middle Eocene rifting and uplift, and a middle-late Oligocene unconformity overlain by a thin section of Neogene-Holocene pelagic calcareous ooze. This paper summarizes the available post-cruise biostratigraphic and magnetostratigraphic data for the Cretaceous-Paleogene section on Broken Ridge. The synthesis of this information permits a more precise interpretation of the timing of events in the history of Broken Ridge, in particular the timing and duration of the middle Eocene rifting event. Paleontologic data support rapid flexural uplift of Broken Ridge in response to mechanical rather than thermal forces. Other highlights of the section include a complete Cretaceous/Tertiary boundary and an opportunity for first-order correlation of Paleogene diatom stratigraphy with that of the calcareous groups.
Resumo:
Chemical and isotopic (Nd and Sr) compositions have been determined for 12 Cretaceous basaltic samples (108 Ma old) from Holes 417D and 418A of Legs 51,52 and 53. We have found that: (1) The chemical compositions are typical of MORB. They do not vary systematically with the stratigraphic positions of the analyzed samples; thus, the chemical evolution is independent of the eruption sequence that occurred at this Cretaceous ridge. (2) REE patterns for all rocks are characterized by a strong LREE depletion with (La/Sm)N = 0.38-0.50; no significant Eu anomalies are found; HREE are nearly flat or slightly depleted towards Yb-Lu and have 12-18 * chondritic abundances. Combining the results of previous studies, it suggests that no significant temporal and spatial variation in magma chemistry (especially for LIL elements) has occurred in the 'normal' ridge segments over the last 150 Ma. (3) lsotopically, 143Nd/144Nd ratios vary from 0.513026 to 0.513154, corresponding to epsilon-Nd(0) = +7.5 to +10, and they fall in the typical range of MORB. However, these rocks have unexpectedly high 87Sr/86Sr ratios (0.70355-0.70470) which are attributed to the result of seawater-rock interaction. (4) The Nd model ages (Tin), ranging from 1.53 to 2.47 (average 2.06) AE, suggest that the upper mantle source(s) underwent a large scale chemical differentiation leading to LREE and other LIL element depletion about 2 AE ago, assuming a simple two-stage model. More realistically, the variation in Tm(Nd) or epsilon-Nd could be derived from mixing of heterogeneous mantle sources that were a consequence of continuous mantle differentiation and continental formation. (5) Because of the low mg values (0.52-0.63), the analyzed basaltic rocks do not represent primary liquids of mantle melting. The variation in La/Sm ratios and TiO2 are not compatible with a model in which all rocks are genetically related by a simple fractional crystallization. Rather, it is proposed that the basaltic rocks might have been derived from some heterogeneous upper mantle source with or without later magmatic mixing, and followed by some shallow-level fraetionations.
Resumo:
Investigation of the ferromagnetic fraction of sediments from the Brazil Basin and Rio Grande Rise shows that its main constituents are magnetite and hematite. The magnetite is detrital, but the hematite is both detrital and chemical in origin. Magnetite is the main carrier of the natural remanent magnetization (NRM); therefore, the NRM is detrital remanent magnetization (DRM). In a number of cases, the change of magnetic parameters along the stratigraphic column permits some refinement of the previously defined boundaries of the lithologic units.
Resumo:
Well-preserved Mesozoic radiolarian faunas have been recovered at four sites of Deep Sea Drilling Project Leg 62. Late Early Cretaceous assemblages, which occur always with foraminifers or calcareous nannoplankton, allow the description of 21 new species, the introduction of a new zone scheme, and calibration of the radiolarian zones with the geochronological scale.
Resumo:
Site 549 recovered a Lower Cretaceous succession which has been shown to include parts of the Barremian and Albian stages. Forty-four species of Ostracoda are illustrated and their stratigraphic distribution used to recognise three major facies units. An high diversity inner shelf facies earlier in the Barremian gives way to a low diversity, outer shelf facies, higher in the succession. The early Albian appears to indicate a return to an inner shelf fauna. The faunas recovered have been compared to similar faunas elsewhere in N. W. Europe.
Resumo:
Five of the six sites drilled during Leg 77 of the Deep Sea Drilling Project yielded Cretaceous sediments. Two of these sites, 535 and 540, form a composite section that spans the upper Berriasian through most of the Cenomanian. Olive black marly limestones in this interval yield relatively rich, well-preserved nannofossil assemblages that allow biostratigraphic subdivision of the sequence. This composite section provides important information on the Early Cretaceous history of the Gulf of Mexico, as well as additional information on tropical Lower Cretaceous nannofossil assemblages. The post-Cenomanian nannofossil (and sedimentary) record is limited to a thin, condensed section of Santonian through lower Maestrichtian pelagic sediments at one site (538) and is absent or represented by redeposited material at the other sites. Two new genera, Perchnielsenella and Darwinilithus, are described. Two new taxa, Darwinilithus pentarhethum and Lithraphidites acutum ssp. eccentricum, are described; and two new combinations, Rhagodiscus reightonensis and Perchnielsenella stradneri, are propose.
Resumo:
Lower and Upper Cretaceous sediments of the Maurice Ewing Bank, Site 511 (black shales, mudstones, zeolitic clays, and nannofossil chalk and ooze, 361 m thick) are characterized by an assemblage of planktonic foraminifers of low systematic diversity, including over 50 species. Representatives of Hedbergella, Globigerinelloides, Archaeoglobigerina, Whiteinella, Rugoglobigerina, and Heterohelix are predominant; species of Ticinella, Praeglobotruncana, Globotruncana, Schackoina, and Planoglobulina associated with some interbeds occur in smaller numbers. Planktonic foraminifers enable us to subdivide the Cretaceous sediments into Barremian-Aptian, Albian, upper Cenomanian, Turonian, Coniacian-Santonian, Santonian, Campanian, and upper Campanian-Maestrichtian intervals. The Lower Cretaceous (Albian) and Upper Cretaceous (upper Cenomanian-Turonian) are separated by a distinct hiatus and unconformity. In the Upper Cretaceous section, a hiatus may be present at the top of the Campanian. The upper Cenomanian-Santonian sediments are reduced in thickness, whereas the Campanian-Maestrichtian interval is expanded. In the Barremian-Aptian black shales, planktonic foraminifers are very rare: they were deposited in shallow water under anoxic conditions. In the Albian, when sedimentation conditions became oxidizing and the depth increased to 200-400 meters, they became more common. By the end of the Upper Cretaceous, depths appear to increase to 2000 meters. In the interbeds of calcareous sediments, planktonic foraminifers are common; in interbeds of zeolitic clays they are rare or absent (dissolution facies). Alternation of these types of sediments is especially characteristic of the Coniacian-lower Campanian, testifying to abrupt CCD fluctuations. The planktonic foraminifers of the Falkland Plateau belong to the Austral Province of the Southern Hemisphere. In their systematic composition they are extremely similar to microfauna of the Boreal Province of the Northern Hemisphere.
Resumo:
The stable carbon and oxygen isotope composition of different benthic foraminiferal species of the latest Campanian and earliest Maastrichtian from Ocean Drilling Project Hole 690C (Weddell Sea, southern South Atlantic, ~1800 m paleowater depth) have been investigated. The total range of measured isotope values of all samples exceeds ~4 per mil for delta 13C and 1.1 per mil for delta 18O. Carbon isotope values of proposed deep infaunal species are generally similar or only slightly lower when compared to proposed epifaunal to shallow infaunal species. Interspecific differences vary between samples probably reflecting temporal changes in organic carbon fluxes to the sea floor. Constantly lower delta 13C values for Pullenia marssoni and Pullenia reussi suggest the deepest habitat for these species. The strong depletion of delta 13C values by up to 3 per mil within lenticulinids may be attributed to a deep infaunal microhabitat, strong vital effects, or different feeding strategy when compared to other species or modern lenticulinids. The mean delta 18O values reveal a strong separation of epifaunal to shallow infaunal and deep infaunal species. Epifaunal to shallow infaunal species are characterized by low delta 18O values, deep infaunal species by higher values. This result possibly reflects lower metabolic rates and longer life cycles of deep infaunal species or the operating of a pore water [CO3]2- effect on the benthic foraminiferal stable isotopes. Pyramidina szajnochae shows an enrichment of oxygen isotopes with test size comprising a total of 0.6 per mil between 250 and 1250 µm shell size. Although delta 13C lacks a corresponding trend these data likely represent the presence of changes in metabolic rates during ontogenesis. These results demonstrate the general applicability of multi-species stable isotope measurements of pristine Cretaceous benthic foraminifera to reconstruct past microhabitats and to evaluate biological and environmental effects on the stable isotope composition.