947 resultados para Coupled-wave theory
Resumo:
Using asymptotics, the coupled wavenumbers in an infinite fluid-filled flexible cylindrical shell vibrating in the beam mode (viz. circumferential wave order n = 1) are studied. Initially, the uncoupled wavenumbers of the acoustic fluid and the cylindrical shell structure are discussed. Simple closed form expressions for the structural wavenumbers (longitudinal, torsional and bending) are derived using asymptotic methods for low- and high-frequencies. It is found that at low frequencies the cylinder in the beam mode behaves like a Timoshenko beam. Next, the coupled dispersion equation of the system is rewritten in the form of the uncoupled dispersion equation of the structure and the acoustic fluid, with an added fluid-loading term involving a parameter mu due to the coupling. An asymptotic expansion involving mu is substituted in this equation. Analytical expressions are derived for the coupled wavenumbers (as modifications to the uncoupled wavenumbers) separately for low- and high-frequency ranges and further, within each frequency range, for large and small values of mu. Only the flexural wavenumber, the first rigid duct acoustic cut-on wavenumber and the first pressure-release acoustic cut-on wavenumber are considered. The general trend found is that for small mu, the coupled wavenumbers are close to the in vacuo structural wavenumber and the wavenumbers of the rigid-acoustic duct. With increasing mu, the perturbations increase, until the coupled wavenumbers are better identified as perturbations to the pressure-release wavenumbers. The systematic derivation for the separate cases of small and large mu gives more insight into the physics and helps to continuously track the wavenumber solutions as the fluid-loading parameter is varied from small to large values. Also, it is found that at any frequency where two wavenumbers intersect in the uncoupled analysis, there is no more an intersection in the coupled case, but a gap is created at that frequency. This method of asymptotics is simple to implement using a symbolic computation package (like Maple). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The cyclically varying magnetic field of the Sun is believed to be produced by the hydromagnetic dynamo process. We first summarize the relevant observational data pertaining to sunspots and solar cycle. Then we review the basic principles of MHD needed to develop the dynamo theory. This is followed by a discussion how bipolar sunspots form due to magnetic buoyancy of flux tubes formed at the base of the solar convection zone. Following this, we come to the heart of dynamo theory. After summarizing the basic ideas of a turbulent dynamo and the basic principles of its mean field formulation, we present the famous dynamo wave solution, which was supposed to provide a model for the solar cycle. Finally we point out how a flux transport dynamo can circumvent some of the difficulties associated with the older dynamo models.
Resumo:
The dispersion and impedance characteristics of an inverted slot-mode (ISM) slow-wave structure computed by three different techniques, i.e., an analytical model based on a periodic quasi-TEM approach, an equivalent-circuit model, and 3-D electromagnetic simulation are obtained and compared. The comparison was carried out for three different slot-mode structures at S-, C-, and X-bands. The approach was also validated with experimental measurements on a practical X-band ISM traveling-wave tube. The design of ferruleless ISM slow-wave structures, both in circular and rectangular formats, has also been proposed and the predicted dispersion characteristics for these two geometries are compared with 3-D simulation and cold-test measurements. The impedance characteristics for all three designs are also compared.
Resumo:
Polarized scattering in spectral lines is governed by a 4; 4 matrix that describes how the Stokes vector is scattered and redistributed in frequency and direction. Here we develop the theory for this redistribution matrix in the presence of magnetic fields of arbitrary strength and direction. This general magnetic field case is called the Hanle- Zeeman regime, since it covers both of the partially overlapping weak- and strong- field regimes in which the Hanle and Zeeman effects dominate the scattering polarization. In this general regime, the angle-frequency correlations that describe the so-called partial frequency redistribution (PRD) are intimately coupled to the polarization properties. We develop the theory for the PRD redistribution matrix in this general case and explore its detailed mathematical properties and symmetries for the case of a J = 0 -> 1 -> 0 scattering transition, which can be treated in terms of time-dependent classical oscillator theory. It is shown how the redistribution matrix can be expressed as a linear superposition of coherent and noncoherent parts, each of which contain the magnetic redistribution functions that resemble the well- known Hummer- type functions. We also show how the classical theory can be extended to treat atomic and molecular scattering transitions for any combinations of quantum numbers.
Resumo:
A modified density matrix renormalization group (DMRG) algorithm is applied to the zigzag spin-1/2 chain with frustrated antiferromagnetic exchange J(1) and J(2) between first and second neighbors. The modified algorithm yields accurate results up to J(2)/J(1) approximate to 4 for the magnetic gap Delta to the lowest triplet state, the amplitude B of the bond order wave phase, the wavelength lambda of the spiral phase, and the spin correlation length xi. The J(2)/J(1) dependences of Delta, B, lambda, and xi provide multiple comparisons to field theories of the zigzag chain. The twist angle of the spiral phase and the spin structure factor yield additional comparisons between DMRG and field theory. Attention is given to the numerical accuracy required to obtain exponentially small gaps or exponentially long correlations near a quantum phase transition.
Resumo:
In this paper, the nonlocal elasticity theory has been incorporated into classical Euler-Bernoulli rod model to capture unique features of the nanorods under the umbrella of continuum mechanics theory. The strong effect of the nonlocal scale has been obtained which leads to substantially different wave behaviors of nanorods from those of macroscopic rods. Nonlocal Euler-Bernoulli bar model is developed for nanorods. Explicit expressions are derived for wavenumbers and wave speeds of nanorods. The analysis shows that the wave characteristics are highly over estimated by the classical rod model, which ignores the effect of small-length scale. The studies also shows that the nonlocal scale parameter introduces certain band gap region in axial wave mode where no wave propagation occurs. This is manifested in the spectrum cures as the region where the wavenumber tends to infinite (or wave speed tends to zero). The results can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of single-walled carbon nanotubes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper the classical problem of water wave scattering by two partially immersed plane vertical barriers submerged in deep water up to the same depth is investigated. This problem has an exact but complicated solution and an approximate solution in the literature of linearised theory of water waves. Using the Havelock expansion for the water wave potential, the problem is reduced here to solving Abel integral equations having exact solutions. Utilising these solutions,two sets of expressions for the reflection and transmission coefficients are obtained in closed forms in terms of computable integrals in contrast to the results given in the literature which,involved six complicated integrals in terms of elliptic functions. The two different expressions for each coefficient produce almost the same numerical results although it has not been possible to prove their equivalence analytically. The reflection coefficient is depicted against the wave number in a number of figures which almost coincide with the figures available in the literature wherein the problem was solved approximately by employing complementary approximations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The natural modes of a non-linear system with two degrees of freedom are investigated. The system, which may contain either hard or soft springs, is shown to possess three modes of vibration one of which does not have any counterpart in the linear theory. The stability analysis indicates the existence of seven different modal stability patterns depending on the values of two parameters of non-linearity.
Resumo:
Grover's database search algorithm, although discovered in the context of quantum computation, can be implemented using any physical system that allows superposition of states. A physical realization of this algorithm is described using coupled simple harmonic oscillators, which can be exactly solved in both classical and quantum domains. Classical wave algorithms are far more stable against decoherence compared to their quantum counterparts. In addition to providing convenient demonstration models, they may have a role in practical situations, such as catalysis.
Resumo:
A microscopic theory of equilibrium solvation and solvation dynamics of a classical, polar, solute molecule in dipolar solvent is presented. Density functional theory is used to explicitly calculate the polarization structure around a solvated ion. The calculated solvent polarization structure is different from the continuum model prediction in several respects. The value of the polarization at the surface of the ion is less than the continuum value. The solvent polarization also exhibits small oscillations in space near the ion. We show that, under certain approximations, our linear equilibrium theory reduces to the nonlocal electrostatic theory, with the dielectric function (c(k)) of the liquid now wave vector (k) dependent. It is further shown that the nonlocal electrostatic estimate of solvation energy, with a microscopic c(k), is close to the estimate of linearized equilibrium theories of polar liquids. The study of solvation dynamics is based on a generalized Smoluchowski equation with a mean-field force term to take into account the effects of intermolecular interactions. This study incorporates the local distortion of the solvent structure near the ion and also the effects of the translational modes of the solvent molecules.The latter contribution, if significant, can considerably accelerate the relaxation of solvent polarization and can even give rise to a long time decay that agrees with the continuum model prediction. The significance of these results is discussed.
Resumo:
A molecular theory of collective orientational relaxation of dipolar molecules in a dense liquid is presented. Our work is based on a generalized, nonlinear, Smoluchowski equation (GSE) that includes the effects of intermolecular interactions through a mean‐field force term. The effects of translational motion of the liquid molecules on the orientational relaxation is also included self‐consistently in the GSE. Analytic expressions for the wave‐vector‐dependent orientational correlation functions are obtained for one component, pure liquid and also for binary mixtures. We find that for a dipolar liquid of spherical molecules, the correlation function ϕ(k,t) for l=1, where l is the rank of the spherical harmonics, is biexponential. At zero wave‐vector, one time constant becomes identical with the dielectric relaxation time of the polar liquid. The second time constant is the longitudinal relaxation time, but the contribution of this second component is small. We find that polar forces do not affect the higher order correlation functions (l>1) of spherical dipolar molecules in a linearized theory. The expression of ϕ(k,t) for a binary liquid is a sum of four exponential terms. We also find that the wave‐vector‐dependent relaxation times depend strongly on the microscopic structure of the dense liquid. At intermediate wave vectors, the translational diffusion greatly accelerates the rate of orientational relaxation. The present study indicates that one must pay proper attention to the microscopic structure of the liquid while treating the translational effects. An analysis of the nonlinear terms of the GSE is also presented. An interesting coupling between the number density fluctuation and the orientational fluctuation is uncovered.
Resumo:
In the framework of the ECSK [Einstein-Cartan-Sciama-Kibble] theory of cosmology, a scalar field nonminimally coupled to the gravitational field is considered. For a Robertson-Walker open universe (k=0) in the radiation era, the field equations admit a singularity-free solution for the scale factor. In theory, the torsion is generated through nonminimal coupling of a scalar field to the gravitation field. The nonsingular nature of the cosmological model automatically solves the flatness problem. Further absence of event horizon and particle horizon explains the high degree of isotropy, especially of 2.7-K background radiation.
Resumo:
Analytical expressions are found for the coupled wavenumbers in an infinite fluid-filled cylindrical shell using the asymptotic methods. These expressions are valid for any general circumferential order (n).The shallow shell theory (which is more accurate at higher frequencies)is used to model the cylinder. Initially, the in vacua shell is dealt with and asymptotic expressions are derived for the shell wavenumbers in the high-and the low-frequency regimes. Next, the fluid-filled shell is considered. Defining a relevant fluid-loading parameter p, we find solutions for the limiting cases of small and large p. Wherever relevant, a frequency scaling parameter along with some ingenuity is used to arrive at an elegant asymptotic expression. In all cases.Poisson's ratio v is used as an expansion variable. The asymptotic results are compared with numerical solutions of the dispersion equation and the dispersion relation obtained by using the more general Donnell-Mushtari shell theory (in vacuo and fluid-filled). A good match is obtained. Hence, the contribution of this work lies in the extension of the existing literature to include arbitrary circumferential orders(n). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We give an explicit, direct, and fairly elementary proof that the radial energy eigenfunctions for the hydrogen atom in quantum mechanics, bound and scattering states included, form a complete set. The proof uses only some properties of the confluent hypergeometric functions and the Cauchy residue theorem from analytic function theory; therefore it would form useful supplementary reading for a graduate course on quantum mechanics.
Resumo:
General relativity has very specific predictions for the gravitational waveforms from inspiralling compact binaries obtained using the post-Newtonian (PN) approximation. We investigate the extent to which the measurement of the PN coefficients, possible with the second generation gravitational-wave detectors such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and the third generation gravitational-wave detectors such as the Einstein Telescope (ET), could be used to test post-Newtonian theory and to put bounds on a subclass of parametrized-post-Einstein theories which differ from general relativity in a parametrized sense. We demonstrate this possibility by employing the best inspiralling waveform model for nonspinning compact binaries which is 3.5PN accurate in phase and 3PN in amplitude. Within the class of theories considered, Advanced LIGO can test the theory at 1.5PN and thus the leading tail term. Future observations of stellar mass black hole binaries by ET can test the consistency between the various PN coefficients in the gravitational-wave phasing over the mass range of 11-44M(circle dot). The choice of the lower frequency cutoff is important for testing post-Newtonian theory using the ET. The bias in the test arising from the assumption of nonspinning binaries is indicated.