975 resultados para Control variable
Resumo:
BACKGROUND Hypoglycin A, found in seeds of Acer negundo, appears to cause seasonal pasture myopathy (SPM) in North America and is implicated in atypical myopathy (AM) in Europe. Acer negundo is uncommon in Europe. Thus, the potential source of hypoglycin A in Europe is unknown. HYPOTHESIS AND OBJECTIVES We hypothesized that seeds of Acer pseudoplatanus were the source of hypoglycin A in Europe. Our objective was to determine the concentration of hypoglycin A in seeds of A. pseudoplatanus trees located in pastures where previous cases of AM had occurred. ANIMALS None. METHODS University of Berne records were searched to retrospectively identify 6 farms with 10 AM cases and 11 suspected AM deaths between 2007 and 2011. During October 2012, A. pseudoplatanus seeds were collected from 2 to 6 trees per pasture on 6 AM farms (7 pastures) from trees in or close to 2 pastures on 2 control farms where AM had not been previously reported. Hypoglycin A in seeds was analyzed by GC-MS. RESULTS Acer pseudoplatanus trees were identified on all AM pastures. Hypoglycin A was detected in all A. pseudoplatanus seeds in highly variable concentrations ranging from 0.04 to 2.81 μg/mg (mean 0.69) on AM farms and 0.10 to 9.12 μg/mg (mean 1.59) on control farms. CONCLUSION AND CLINICAL IMPORTANCE Preventing horses from grazing pastures containing A. pseudoplatanus seeds during late fall and early spring might be the best means to prevent AM.
Resumo:
BACKGROUND: Enhancing physical activity in overweight and obese individuals is an important means to promote health in this target population. The Health Action Process Approach (HAPA), which was the theoretical framework of this study, focuses on individual self-regulation variables for successful health behavior change. One key self-regulation variable of this model is action control with its three subfacets awareness of intentions, self-monitoring and regulatory effort. The social context of individuals, however, is usually neglected in common health behavior change theories. In order to integrate social influences into the HAPA, this randomized controlled trial investigated the effectiveness of a dyadic conceptualization of action control for promoting physical activity. METHODS/DESIGN: This protocol describes the design of a single-blind randomized controlled trial, which comprises four experimental groups: a dyadic action control group, an individual action control group and two control groups. Participants of this study are overweight or obese, heterosexual adult couples who intend to increase their physical activity. Blocking as means of a gender-balanced randomization is used to allocate couples to conditions and partners to either being the target person of the intervention or to the partner condition. The ecological momentary intervention takes place in the first 14 days after baseline assessment and is followed by another 14 days diary phase without intervention. Follow-ups are one month and six months later. Subsequent to the six-months follow-up another 14 days diary phase takes place.The main outcome measures are self-reported and accelerometer-assessed physical activity. Secondary outcome measures are Body Mass Index (BMI), aerobic fitness and habitual physical activity. DISCUSSION: This is the first study examining a dyadic action control intervention in comparison to an individual action control condition and two control groups applying a single-blind randomized control trial. Challenges with running couples studies as well as advantages and disadvantages of certain design-related decisions are discussed. This RCT was funded by the Swiss National Science Foundation (PP00P1_133632/1) and was registered on 27/04/2012 at http://www.isrctn.com/ISRCTN15705531.
Resumo:
BACKGROUND: Enhancing physical activity in overweight and obese individuals is an important means to promote health in this target population. The Health Action Process Approach (HAPA), which was the theoretical framework of this study, focuses on individual self-regulation variables for successful health behavior change. One key self-regulation variable of this model is action control with its three subfacets awareness of intentions, self-monitoring and regulatory effort. The social context of individuals, however, is usually neglected in common health behavior change theories. In order to integrate social influences into the HAPA, this randomized controlled trial investigated the effectiveness of a dyadic conceptualization of action control for promoting physical activity. METHODS/DESIGN: This protocol describes the design of a single-blind randomized controlled trial, which comprises four experimental groups: a dyadic action control group, an individual action control group and two control groups. Participants of this study are overweight or obese, heterosexual adult couples who intend to increase their physical activity. Blocking as means of a gender-balanced randomization is used to allocate couples to conditions and partners to either being the target person of the intervention or to the partner condition. The ecological momentary intervention takes place in the first 14 days after baseline assessment and is followed by another 14 days diary phase without intervention. Follow-ups are one month and six months later. Subsequent to the six-months follow-up another 14 days diary phase takes place.The main outcome measures are self-reported and accelerometer-assessed physical activity. Secondary outcome measures are Body Mass Index (BMI), aerobic fitness and habitual physical activity. DISCUSSION: This is the first study examining a dyadic action control intervention in comparison to an individual action control condition and two control groups applying a single-blind randomized control trial. Challenges with running couples studies as well as advantages and disadvantages of certain design-related decisions are discussed. This RCT was funded by the Swiss National Science Foundation (PP00P1_133632/1) and was registered on 27/04/2012 at http://www.isrctn.com/ISRCTN15705531.
Resumo:
Demonstration of survival and outcome of progressive multifocal leukoencephalopathy (PML) in a 56-year-old patient with common variable immunodeficiency, consisting of severe hypogammaglobulinemia and CD4+ T lymphocytopenia, during continuous treatment with mirtazapine (30 mg/day) and mefloquine (250 mg/week) over 23 months. Regular clinical examinations including Rankin scale and Barthel index, nine-hole peg and box and block tests, Berg balance, 10-m walking tests, and Montreal Cognitive Assessment (MoCA) were done. Laboratory diagnostics included complete blood count and JC virus (JCV) concentration in cerebrospinal fluid (CSF). The noncoding control region (NCCR) of JCV, important for neurotropism and neurovirulence, was sequenced. Repetitive MRI investigated the course of brain lesions. JCV was detected in increasing concentrations (peak 2568 copies/ml CSF), and its NCCR was genetically rearranged. Under treatment, the rearrangement changed toward the archetype sequence, and later JCV DNA became undetectable. Total brain lesion volume decreased (8.54 to 3.97 cm(3)) and atrophy increased. Barthel (60 to 100 to 80 points) and Rankin (4 to 2 to 3) scores, gait stability, and box and block (7, 35, 25 pieces) and nine-hole peg (300, 50, 300 s) test performances first improved but subsequently worsened. Cognition and walking speed remained stable. Despite initial rapid deterioration, the patient survived under continuous treatment with mirtazapine and mefloquine even though he belongs to a PML subgroup that is usually fatal within a few months. This course was paralleled by JCV clones with presumably lower replication capability before JCV became undetectable. Neurological deficits were due to PML lesions and progressive brain atrophy.
Resumo:
OBJECTIVE Cochlear implants (CI) are standard treatment for prelingually deafened children and postlingually deafened adults. Computed tomography (CT) is the standard method for postoperative imaging of the electrode position. CT scans accurately reflect electrode depth and position, which is essential prior to use. However, routine CT examinations expose patients to radiation, which is especially problematic in children. We examined whether new CT protocols could reduce radiation doses while preserving diagnostic accuracy. METHODS To investigate whether electrode position can be assessed by low-dose CT protocols, a cadaveric lamb model was used because the inner ear morphology is similar to humans. The scans were performed at various volumetric CT dose-indexes CTDIvol)/kV combinations. For each constant CTDIvol the tube voltage was varied (i.e., 80, 100, 120 and 140kV). This procedure was repeated at different CTDIvol values (21mGy, 11mGy, 5.5mGy, 2.8mGy and 1.8mGy). To keep the CTDIvol constant at different tube voltages, the tube current values were adjusted. Independent evaluations of the images were performed by two experienced and blinded neuroradiologists. The criteria diagnostic usefulness, image quality and artifacts (scaled 1-4) were assessed in 14 cochlear-implanted cadaveric lamb heads with variable tube voltages. RESULTS Results showed that the standard CT dose could be substantially reduced without sacrificing diagnostic accuracy of electrode position. The assessment of the CI electrode position was feasible in almost all cases up to a CTDIvol of 2-3mGy. The number of artifacts did not increase for images within this dose range as compared to higher dosages. The extent of the artifacts caused by the implanted metal-containing CI electrode does not depend on the radiation dose and is not perceptibly influenced by changes in the tube voltage. Summarizing the evaluation of the CI electrode position is possible even at a very low radiation dose. CONCLUSIONS CT imaging of the temporal bone for postoperative electrode position control of the CI is possible with a very low and significantly radiation dose. The tube current-time product and voltage can be reduced by 50% without increasing artifacts. Low-dose postoperative CT scans are sufficient for localizing the CI electrode.
Resumo:
When proposing primary control (changing the world to fit self)/secondary control (changing self to fit the world) theory, Weisz et al. (1984) argued for the importance of the “serenity to accept the things I cannot change, the courage to change the things I can” (p. 967), and the wisdom to choose the right control strategy that fits the context. Although the dual processes of control theory generated hundreds of empirical studies, most of them focused on the dichotomy of PC and SC, with none of these tapped into the critical concept: individuals’ ability to know when to use what. This project addressed this issue by using scenario questions to study the impact of situationally adaptive control strategies on youth well-being. To understand the antecedents of youths’ preference for PC or SC, we also connected PCSC theory with Dweck’s implicit theory about the changeability of the world. We hypothesized that youths’ belief about the world’s changeability impacts how difficult it was for them to choose situationally adaptive control orientation, which then impacts their well-being. This study included adolescents and emerging adults between the ages of 18 and 28 years (Mean = 20.87 years) from the US (n = 98), China (n = 100), and Switzerland (n = 103). Participants answered a questionnaire including a measure of implicit theories about the fixedness of the external world, a scenario-based measure of control orientation, and several measures of well-being. Preliminary analyses of the scenario-based control orientation measures showed striking cross-cultural similarity of preferred control responses: while for three of the six scenarios primary control was the predominately chosen control response in all cultures, for the other three scenarios secondary control was the predominately chosen response. This suggested that youths across cultures are aware that some situations call for primary control, while others demand secondary control. We considered the control strategy winning the majority of the votes to be the strategy that is situationally adaptive. The results of a multi-group structural equation mediation model with the extent of belief in a fixed world as independent variable, the difficulties of carrying out the respective adaptive versus non-adaptive control responses as two mediating variables and the latent well-being variable as dependent variable showed a cross-culturally similar pattern of effects: a belief in a fixed world was significantly related to higher difficulties in carrying out the normative as well as the non-normative control response, but only the difficulty of carrying out the normative control response (be it primary control in situations where primary control is normative or secondary control in situations where secondary control is normative) was significantly related to a lower reported well-being (while the difficulty of carrying out the non-normative response was unrelated to well-being). While previous research focused on cross-cultural differences on the choice of PC or SC, this study shed light on the universal necessity of applying the right kind of control to fit the situation.
Resumo:
The bulk magnetic mineral record from Lake Ohrid, spanning the past 637 kyr, reflects large-scale shifts in hydrological conditions, and, superimposed, a strong signal of environmental conditions on glacial–interglacial and millennial timescales. A shift in the formation of early diagenetic ferrimagnetic iron sulfides to siderites is observed around 320 ka. This change is probably associated with variable availability of sulfide in the pore water. We propose that sulfate concentrations were significantly higher before ∼ 320 ka, due to either a higher sulfate flux or lower dilution of lake sulfate due to a smaller water volume. Diagenetic iron minerals appear more abundant during glacials, which are generally characterized by higher Fe / Ca ratios in the sediments. While in the lower part of the core the ferrimagnetic sulfide signal overprints the primary detrital magnetic signal, the upper part of the core is dominated by variable proportions of high- to low-coercivity iron oxides. Glacial sediments are characterized by high concentration of high-coercivity magnetic minerals (hematite, goethite), which relate to enhanced erosion of soils that had formed during preceding interglacials. Superimposed on the glacial–interglacial behavior are millennial-scale oscillations in the magnetic mineral composition that parallel variations in summer insolation. Like the processes on glacial–interglacial timescales, low summer insolation and a retreat in vegetation resulted in enhanced erosion of soil material. Our study highlights that rock-magnetic studies, in concert with geochemical and sedimentological investigations, provide a multi-level contribution to environmental reconstructions, since the magnetic properties can mirror both environmental conditions on land and intra-lake processes.
Resumo:
Objective. To evaluate the host risk factors associated with rifamycin-resistant Clostridium difficile (C. diff) infection in hospitalized patients compared to rifamycin-susceptible C.diff infection.^ Background. C. diff is the most common definable cause of nosocomial diarrhea affecting elderly hospitalized patients taking antibiotics for prolonged durations. The epidemiology of Clostridium difficile associated disease is now changing with the reports of a new hypervirulent strain causing hospital outbreaks. This new strain is associated with increased disease severity and mortality. The conventional therapy for C. diff includes metronidazole and vancomycin but high recurrence rates and treatment failures are now becoming a major concern. Rifamycin antibiotics are being developed as a new therapeutic option to treat C. diff infection after their efficacy was established in a few in vivo and in vitro studies. There are some recent studies that report an association between the hypervirulent strain and emerging rifamycin resistance. These findings assess the need for clinical studies to better understand the efficacy of rifamycin drugs against C. diff.^ Methods. This is a hospital-based, matched case-control study using de-identified data drawn from two prospective cohort studies involving C. diff patients at St Luke's Hospital. The C. diff isolates from these patients are screened for rifamycin resistance using agar dilution methods for minimum inhibitory concentrations (MIC) as part of Dr Zhi-Dong Jiang's study. Twenty-four rifamycin-rifamycin resistant C. diff cases were identified and matched with one rifamycin susceptible C. diff control on the basis of ± 10 years of age and hospitalization 30 days before or after the case. De-identified data for the 48 subjects was obtained from Dr Kevin Garey's clinical study at St Luke's Hospital enrolling C. diff patients. It was reviewed to gather information about host risk factors, outcome variables and relevant clinical characteristic.^ Results. Medical diagnosis at the time of admission (p = 0.0281) and history of chemotherapy (p = 0.022) were identified as a significant risk factor while hospital stay ranging from 1 week to 1 month and artificial feeding were identified as an important outcome variable (p = 0.072 and p = 0.081 respectively). Horn's Index assessing the severity of underlying illness and duration of antibiotics for cases and controls showed no significant difference.^ Conclusion. The study was a small project designed to identify host risk factors and understand the clinical implications of rifamycin-resistance. The study was underpowered and a larger sample size is needed to validate the results.^
Resumo:
This thesis project is motivated by the potential problem of using observational data to draw inferences about a causal relationship in observational epidemiology research when controlled randomization is not applicable. Instrumental variable (IV) method is one of the statistical tools to overcome this problem. Mendelian randomization study uses genetic variants as IVs in genetic association study. In this thesis, the IV method, as well as standard logistic and linear regression models, is used to investigate the causal association between risk of pancreatic cancer and the circulating levels of soluble receptor for advanced glycation end-products (sRAGE). Higher levels of serum sRAGE were found to be associated with a lower risk of pancreatic cancer in a previous observational study (255 cases and 485 controls). However, such a novel association may be biased by unknown confounding factors. In a case-control study, we aimed to use the IV approach to confirm or refute this observation in a subset of study subjects for whom the genotyping data were available (178 cases and 177 controls). Two-stage IV method using generalized method of moments-structural mean models (GMM-SMM) was conducted and the relative risk (RR) was calculated. In the first stage analysis, we found that the single nucleotide polymorphism (SNP) rs2070600 of the receptor for advanced glycation end-products (AGER) gene meets all three general assumptions for a genetic IV in examining the causal association between sRAGE and risk of pancreatic cancer. The variant allele of SNP rs2070600 of the AGER gene was associated with lower levels of sRAGE, and it was neither associated with risk of pancreatic cancer, nor with the confounding factors. It was a potential strong IV (F statistic = 29.2). However, in the second stage analysis, the GMM-SMM model failed to converge due to non- concaveness probably because of the small sample size. Therefore, the IV analysis could not support the causality of the association between serum sRAGE levels and risk of pancreatic cancer. Nevertheless, these analyses suggest that rs2070600 was a potentially good genetic IV for testing the causality between the risk of pancreatic cancer and sRAGE levels. A larger sample size is required to conduct a credible IV analysis.^
Resumo:
Ocean acidification, the result of increased dissolution of carbon dioxide (CO2) in seawater, is a leading subject of current research. The effects of acidification on non-calcifying macroalgae are, however, still unclear. The current study reports two 1-month studies using two different macroalgae, the red alga Palmaria palmata (Rhodophyta) and the kelp Saccharina latissima (Phaeophyta), exposed to control (pHNBS = 8.04) and increased (pHNBS = 7.82) levels of CO2-induced seawater acidification. The impacts of both increased acidification and time of exposure on net primary production (NPP), respiration (R), dimethylsulphoniopropionate (DMSP) concentrations, and algal growth have been assessed. In P. palmata, although NPP significantly increased during the testing period, it significantly decreased with acidification, whereas R showed a significant decrease with acidification only. S. latissima significantly increased NPP with acidification but not with time, and significantly increased R with both acidification and time, suggesting a concomitant increase in gross primary production. The DMSP concentrations of both species remained unchanged by either acidification or through time during the experimental period. In contrast, algal growth differed markedly between the two experiments, in that P. palmata showed very little growth throughout the experiment, while S. latissima showed substantial growth during the course of the study, with the latter showing a significant difference between the acidified and control treatments. These two experiments suggest that the study species used here were resistant to a short-term exposure to ocean acidification, with some of the differences seen between species possibly linked to different nutrient concentrations between the experiments.
Resumo:
The main objective of this work is the design and implementation of the digital control stage of a 280W AC/DC industrial power supply in a single low-cost microcontroller to replace the analog control stage. The switch-mode power supply (SMPS) consists of a PFC boost converter with fixed frequency operation and a variable frequency LLC series resonant DC/DC converter. Input voltage range is 85VRMS-550VRMS and the output voltage range is 24V-28V. A digital controller is especially suitable for this kind of SMPS to implement its multiple functionalities and to keep the efficiency and the performance high over the wide range of input voltages. Additional advantages of the digital control are reliability and size. The optimized design and implementation of the digital control stage it is presented. Experimental results show the stable operation of the controlled system and an estimation of the cost reduction achieved with the digital control stage.
Resumo:
Pulse-width modulation is widely used to control electronic converters. One of the most topologies used for high DC voltage/low DC voltage conversion is the Buck converter. It is obtained as a second order system with a LC filter between the switching subsystem and the load. The use of a coil with an amorphous magnetic material core instead of air core lets design converters with smaller size. If high switching frequencies are used for obtaining high quality voltage output, the value of the auto inductance L is reduced throughout the time. Then, robust controllers are needed if the accuracy of the converter response must not be affected by auto inductance and load variations. This paper presents a robust controller for a Buck converter based on a state space feedback control system combined with an additional virtual space variable which minimizes the effects of the inductance and load variations when a not-toohigh switching frequency is applied. The system exhibits a null steady-state average error response for the entire range of parameter variations. Simulation results are presented.
Resumo:
All-terrain robot locomotion is an active topic of research. Search and rescue maneuvers and exploratory missions could benefit from robots with the abilities of real animals. However, technological barriers exist to ultimately achieving the actuation system, which is able to meet the exigent requirements of these robots. This paper describes the locomotioncontrol of a leg prototype, designed and developed to make a quadruped walk dynamically while exhibiting compliant interaction with the environment. The actuation system of the leg is based on the hybrid use of series elasticity and magneto-rheological dampers, which provide variable compliance for natural-looking motion and improved interaction with the ground. The locomotioncontrol architecture has been proposed to exploit natural leg dynamics in order to improve energy efficiency. Results show that the controller achieves a significant reduction in energy consumption during the leg swing phase thanks to the exploitation of inherent leg dynamics. Added to this, experiments with the real leg prototype show that the combined use of series elasticity and magneto-rheologicaldamping at the knee provide a 20 % reduction in the energy wasted in braking the knee during its extension in the leg stance phase.
Resumo:
Efficient high speed propulsion requires exploiting the cooling capability of the cryogenic fuel in the propulsion cycle. This paper presents the numerical model of a combined cycle engine while in air turbo-rocket configuration. Specific models of the various heat exchanger modules and the turbomachinery elements were developed to represent the physical behavior at off-design operation. The dynamic nature of the model allows the introduction of the engine control logic that limits the operation of certain subcomponents and extends the overall engine operational envelope. The specific impulse and uninstalled thrust are detailed while flying a determined trajectory between Mach 2.5 and 5 for varying throttling levels throughout the operational envelope.
Resumo:
El presente trabajo trata de elementos reforzados con barras de armadura y Fibras Metálicas Recicladas (FMR). El objetivo principal es mejorar el comportamiento a fisuración de elementos sometidos a flexión pura y a flexión compuesta, aumentando en consecuencia las prestaciones en servicio de aquellas estructuras con requerimientos estrictos con respecto al control de fisuración. Entre éstas últimas se encuentran las estructuras integrales, es decir aquellas estructuras sin juntas (puentes o edificios), sometidas a cargas gravitatorias y deformaciones impuestas en los elementos horizontales debidas a retracción, fluencia y temperatura. Las FMR son obtenidas a partir de los neumáticos fuera de uso, y puesto que el procedimiento de reciclado se centra en el caucho en vez que en el acero, su forma es aleatoria y con longitud variable. A pesar de que la eficacia del fibrorefuerzo mediante FMR ha sido demostrada en investigaciones anteriores, la innovación que representa este trabajo consiste en proponer la acción combinada de barras convencionales y FMR en la mejora del comportamiento a fisuración. El objetivo es por tanto mejorar la sostenibilidad del proyecto de la estructura en HA al utilizar materiales reciclados por un lado, y aumentando por el otro la durabilidad. En primer lugar, se presenta el estado del arte con respecto a la fisuración en elementos de HA, que sucesivamente se amplía a elementos reforzados con barras y fibras. Asimismo, se resume el método simplificado para el análisis de columnas de estructuras sin juntas ya propuesto por Pérez et al., con particular énfasis en aquellos aspectos que son incompatibles con la acción de las fibras a nivel seccional. A continuación, se presenta un modelo para describir la deformabilidad seccional y la fisuración en elementos en HA, que luego se amplía a aquellos elementos reforzados con barras y fibras, teniendo en cuenta también los efectos debidos a la retracción (tension stiffening negativo). El modelo es luego empleado para ampliar el método simplificado para el análisis de columnas. La aportación consiste por tanto en contar con una metodología amplia de análisis para este tipo de elementos. Seguidamente, se presenta la campaña experimental preliminar que ha involucrado vigas a escala reducida sometidas a flexión simple, con el objetivo de validar la eficiencia y la usabilidad en el hormigón de las FMR de dos diferentes tipos, y su comportamiento con respecto a fibras de acero comerciales. Se describe a continuación la campaña principal, consistente en ensayos sobre ocho vigas en flexión simple a escala 1:1 (variando contenido en FRM, Ø/s,eff y recubrimiento) y doce columnas a flexión compuesta (variando contenido en FMR, Ø/s,eff y nivel de fuerza axil). Los resultados obtenidos en la campaña principal son presentados y comentados, resaltando las mejoras obtenidas en el comportamiento a fisuración de las vigas y columnas, y la rigidez estructural de las columnas. Estos resultados se comparan con las predicciones del modelo propuesto. Los principales parámetros estudiados para describir la fisuración y el comportamiento seccional de las vigas son: la separación entre fisuras, el alargamiento medio de las armaduras y la abertura de fisura, mientras que en los ensayos de las columnas se ha contrastado las leyes momento/curvatura, la tensión en las barras de armadura y la abertura de fisura en el empotramiento en la base. La comparación muestra un buen acuerdo entre las predicciones y los resultados experimentales. Asimismo, se nota la mejora en el comportamiento a fisuración debido a la incorporación de FMR en aquellos elementos con cuantías de armadura bajas en flexión simple, en elementos con axiles bajos y para el control de la fisuración en elementos con grandes recubrimientos, siendo por tanto resultados de inmediato impacto en la práctica ingenieril (diseño de losas, tanques, estructuras integrales, etc.). VIIIComo punto final, se presentan aplicaciones de las FMR en estructuras reales. Se discuten dos casos de elementos sometidos a flexión pura, en particular una viga simplemente apoyada y un tanque para el tratamiento de agua. En ambos casos la adicción de FMR al hormigón lleva a mejoras en el comportamiento a fisuración. Luego, utilizando el método simplificado para el análisis en servicio de columnas de estructuras sin juntas, se calcula la máxima longitud admisible en casos típicos de puentes y edificación. En particular, se demuestra que las limitaciones de la práctica ingenieril actual (sobre todo en edificación) pueden ser aumentadas considerando el comportamiento real de las columnas en HA. Finalmente, los mismos casos son modificados para considerar el uso de MFR, y se presentan las mejoras tanto en la máxima longitud admisible como en la abertura de fisura para una longitud y deformación impuesta. This work deals with elements reinforced with both rebars and Recycled Steel Fibres (RSFs). Its main objective is to improve cracking behaviour of elements subjected to pure bending and bending and axial force, resulting in better serviceability conditions for these structures demanding keen crack width control. Among these structures a particularly interesting type are the so-called integral structures, i.e. long jointless structures (bridges and buildings) subjected to gravitational loads and imposed deformations due to shrinkage, creep and temperature. RSFs are obtained from End of Life Tyres, and due to the recycling process that is focused on the rubber rather than on the steel they come out crooked and with variable length. Although the effectiveness of RSFs had already been proven by previous research, the innovation of this work consists in the proposing the combined action of conventional rebars and RSFs to improve cracking behaviour. Therefore, the objective is to improve the sustainability of RC structures by, on the one hand, using recycled materials, and on the other improving their durability. A state of the art on cracking in RC elements is firstly drawn. It is then expanded to elements reinforced with both rebars and fibres (R/FRC elements). Finally, the simplified method for analysis of columns of long jointless structures already proposed by Pérez et al. is resumed, with a special focus on the points that conflict when taking into account the action of fibres. Afterwards, a model to describe sectional deformability and cracking of R/FRC elements is presented, taking also into account the effect of shrinkage (negative tension stiffening). The model is then used to implement the simplified method for columns. The novelty represented by this is that a comprehensive methodology to analyse this type of elements is presented. A preliminary experimental campaign consisting in small beams subjected to pure bending is described, with the objective of validating the effectiveness and usability in concrete of RSFs of two different types, and their behaviour when compared with commercial steel fibres. With the results and lessons learnt from this campaign in mind, the main experimental campaign is then described, consisting in cracking tests of eight unscaled beams in pure bending (varying RSF content, Ø/s,eff and concrete cover) and twelve columns subjected to imposed displacement and axial force (varying RSF content, Ø/s,eff and squashing load ratio). The results obtained from the main campaign are presented and discussed, with particular focus on the improvement in cracking behaviour for the beams and columns, and structural stiffness for the columns. They are then compared with the proposed model. The main parameters studied to describe cracking and sectional behaviours of the beam tests are crack spacing, mean steel strain and crack width, while for the column tests these were moment/curvature, stress in rebars and crack with at column embedment. The comparison showed satisfactory agreement between experimental results and model predictions. Moreover, it is pointed out the improvement in cracking behaviour due to the addition of RSF for elements with low reinforcement ratios, elements with low squashing load ratios and for crack width control of elements with large concrete covers, thus representing results with a immediate impact in engineering practice (slab design, tanks, integral structures, etc.). Applications of RSF to actual structures are finally presented. Two cases of elements in pure bending are presented, namely a simple supported beam and a water treatment tank. In both cases the addition of RSF to concrete leads to improvements in cracking behaviour. Then, using the simplified model for the serviceability analysis of columns of jointless structures, the maximum achievable jointless length of typical cases of a bridge and building is obtained. In XIIparticular, it is shown how the limitations of current engineering practice (this is especially the case of buildings) can be increased by considering the actual behaviour of RC supports. Then, the same cases are modified considering the use of RSF, and the improvements both in maximum achievable length and in crack width for a given length and imposed strain at the deck/first floor are shown.