997 resultados para Continental slope off Argentina
Resumo:
Mineralization of organic matter and the subsequent dissolution of calcite were simulated for surface sediments of the upper continental slope off Gabon by using microsensors to measure O2, pH, pCO2 and Ca2+ (in situ), pore-water concentration profiles of NO3-, NH4+, Fe2+, and Mn2+ and SO42- (ex situ), as well as sulfate reduction rates derived from incubation experiments. The transport and reaction model CoTReM was used to simulate the degradation of organic matter by O2, [NO3]-, Fe(OH)3 and [SO4]2-, reoxidation reactions involving Fe2+ and Mn2+, and precipitation of FeS. Model application revealed an overall rate of organic matter mineralization amounting to 50 µmol C cm**-2 yr**-1, of which 77% were due to O2, 17% to [NO3]- and 3% to Fe(OH)3 and 3% to [SO4]2-. The best fit for the pH profile was achieved by adapting three different dissolution rate constants of calcite ranging between 0.01 and 0.5% d-1 and accounting for different calcite phases in the sediment. A reaction order of 4.5 was assumed in the kinetic rate law. A CaCO3 flux to the sediment was estimated to occur at a rate of 42 g m**-2 yr**-1 in the area of equatorial upwelling. The model predicts a redissolution flux of calcite amounting to 36 g m**-2 yr**-1, thus indicating that ~90% of the calcite flux to the sediment is redissolved.
Resumo:
The palaeoclimatic conditions during the Last Glacial Maximum (LGM) of southern South America and especially latitudinal shifts of the southern westerly wind belt are still discussed controversially. Longer palaeoclimatic records covering the Late Quaternary are rare. A particularly sensitive area to Late Quaternary climatic changes is the Norte Chico, northern Chile, because of its extreme climatic gradients. Small shifts of the present climatic zonation could cause significant variations of the terrestrial sedimentary environment which would be recorded in marine terrigenous sediments. To unveil the history of shifting climatic zones in northern Chile, we present a sedimentological study of a marine sediment core (GeoB 3375-1) from the continental slope off the Norte Chico (27.5°S). Sedimentological investigations include bulk- and silt grain-size determinations by sieving, Atterberg separation, and detailed SediGraph analyses. Additionally, clay mineralogical parameters were obtained by X-ray diffraction methods. The 14C-dated core, covering the time span from approximately 10,000 to 120,000 cal. yr B.P., consists of hemipelagic sediments. Terrigenous sedimentological parameters reveal a strong cyclicity, which is interpreted in terms of variations of sediment provenance, modifications of the terrestrial weathering regimes, and modes of sediment input to the ocean. These interpretations imply cyclic variations between comparatively arid climates and more humid conditions with seasonal precipitation for northern Chile (27.5°S) through the Late Quaternary. The cyclicity of the terrigenous sediment parameters is strongly dominated by precessional cycles. For the palaeoclimatic signal, this means that more humid conditions coincide with maxima of the precession index, as e.g. during the LGM. Higher seasonal precipitation for this part of Chile is most likely derived from frontal winter rain of the Southern Westerlies. Thus, the data presented here favour not only an equatorward shift of this atmospheric circulation system during the LGM, but also precession-controlled latitudinal movements throughout the Late Quaternary. Precessional forcing of latitudinal movements of the westerly atmospheric circulation system may be conceivable through teleconnections to the Northern Hemisphere monsoonal system in the Atlantic Ocean region.
Resumo:
Analyses of terrigenous sediments from the Chilean continental slope off the southern border of the Atacama desert (27.5°S), focusing on illite crystallinity and the Fe:Al ratio of the sediments, reveal a high-frequency variability of the position of the Southern Westerlies, which is very similar to the coeval short-term climatic events known from Greenland ice cores and from North Atlantic sediments. Besides showing dominantly precession-driven variability in precipitation over the Andes, these analyses also reveal rapid changes in weathering intensity along the Chilean Coastal Range during the last 80,000 years. These rapid changes occur at much shorter timescales than the 19-100 kyr orbital forcing of the Milankovitch cycles.
Resumo:
The enhanced accumulation of organic matter in Eastern Mediterranean sapropels and their unusually low d15N values have been attributed to either enhanced nutrient availability which led to elevated primary production and carbon sequestration or to enhanced organic matter preservation under anoxic conditions. In order to evaluate these two hypothesis we have determined Ba/Al ratios, amino acid composition, N and organic C concentrations and d15N in sinking particles, surface sediments, eight spatially distributed core records of the youngest sapropel S1 (10-6 ka) and older sapropels (S5, S6) from two locations. These data suggest that (i) temporal and spatial variations in d15N of sedimentary N are driven by different degrees of diagenesis at different sites rather than by changes in N-sources or primary productivity and (ii) present day TOC export production would suffice to create a sapropel like S1 under conditions of deep-water anoxia. This implies that both enhanced TOC accumulation and d15N depletion in sapropels were due to the absence of oxygen in deep waters. Thus preservation plays a major role for the accumulation of organic-rich sediments casting doubt on the need of enhanced primary production for sapropel formation.
Resumo:
Applying the alkenone method, we estimated sea-surface temperatures (SSTs) for the past 33 kyr in two marine sediment cores recovered from the continental slope off mid-latitude Chile. The SST record shows an increase of 6.7°C from the last ice age (LIA) to the Holocene climatic optimum, while the temperature contrast between LIA and modern temperatures is only about 3.4°C. The timing and magnitude of the last deglacial warming in the ocean correspond to those observed in South American continental records. According to our SST record, the existence of a Younger Dryas equivalent cooling in the Southeast Pacific is much more uncertain than for the continental climate changes. A warming step of about 2.5°C observed between 8 and 7.5 cal kyr BP may have been linked to the early to mid-Holocene climatic transition (8.2-7.8 cal kyr BP), also described from equatorial Africa and Antarctica. In principal, variations in the latitudinal position of the Southern Pacific Westerlies are considered to be responsible for SST changes in the Peru-Chile current off mid-latitude Chile.
Resumo:
Serial observations of temperature, salinity, oxygen, alkalinity and pH are presented. They were carried out during an anchor station of R.V. "Meteor" west of Cape Sao Vincente (Portugal) in the area of the maximum Mediterranean water outflow, which follows the continental slope off Portugal. Two observational results are pointed out: The Mediterranean water masses spread out into the Atlantic Ocean, consisting of two distinct layers at depth of 700 m (T=12.0 °C, S=36.15 ?) and 1250 m (T=11.3 °C, S=36.40 ?). The salinity proved to be the most significant indicator of the observed stratification. The values of dissolved oxygen content, alkalinity and pH in the very near bottom layer (1 m above the bottom at depth of 3250 m) are different from the values at depth of 15 m to 100 m above the bottom. As this phenomenon is not observed for the salinity, the changes may be interpreted in terms of chemical and biological processes at the sediment-water interface.
Resumo:
Organic-rich, moderately to sparsely nannofossiliferous Lower Cretaceous claystones ("black shales") were cored at two Ocean Drilling Program Leg 113 sites on the continental slope of East Antarctica off Dronning Maud Land. A 39 m section at Site 692 yielded a Neocomian assemblage of limited diversity with rare Cyclagelosphaera deflandrei, Diadorhombus rectus, and Cruciellipsis cuvillieri, and is probably Valanginian in age. A 70-m section at Site 693 is assigned to the Rhagodiscus angustus Zone (late Aptian-early Albian in age). The latter zone is represented at DSDP sites on the Falkland Plateau, but equivalents to the Neocomian section are absent there, probably due to a disconformity. Watznaueria barnesae is the dominant species at both ODP sites, but it shares dominance with Repagulum parvidentatum at Site 693, where they total 70%-90% of the assemblage; their dominance is attributed to a paleogeographic setting within a restricted basin rather than to postdepositional dissolution of other species. The evolutionary development of this restricted basin and its eventual ventilation in early Albian times is discussed in terms of the regional stratigraphy and the breakup and dispersal of southwestern Gondwanaland. One new species, Corollithion covingtonii, is described.
Resumo:
Sites 1147 (18°50.11'N, 116°33.28'E; water depth = 3246 m) and 1148 (18°50.17'N, 116°33.94'E; water depth = 3294 m) are located on the lowermost continental slope off southern China near the continent/ocean crust boundary of the South China Sea Basin. Site 1147 is located upslope ~0.45 nmi west of Site 1148. Three advanced piston corer holes at Site 1147 and two extended core barrel holes at Site 1148 were cored and combined into a composite (spliced) stratigraphic section, which provided a relatively continuous profile for the lower Oligocene to Holocene (Wang, Prell, Blum, et al., 2000, doi:10.2973/odp.proc.ir.184.2000; Jian, et al., 2001, doi:10.1007/BF02907088) for studying stratigraphy and paleoceanography. A total of 1047 planktonic foraminifers stable isotope measurements were performed on 975 samples covering the upper 409.58 meters composite depth (mcd) at ~42-cm intervals (Tables T1, T2), and a total of 1864 benthic foraminifers measurements were performed on 1650 samples in the upper 837.11 mcd at ~51-cm intervals (Tables T3, T4). We significantly improved the time resolution of the benthic stable isotope record in the upper 476.68 mcd by reducing the average sample spacing to ~29 cm. This translates into an average sampling resolution of ~16 k.y. for the Miocene sequence and ~8 k.y. for the Pliocene-Holocene interval, assuming a change in sedimentation rates from ~1.8 to ~3.5 cm/k.y., as suggested by shipboard stratigraphy. These data sets provide the basis for upcoming studies to establish an oxygen isotope stratigraphy and examine the Neogene evolution of deep and surface water signatures (temperature, salinity, and nutrients) in the South China Sea.
Resumo:
The measurement of short-lived 223Ra often involves a second measurement for supported activities, which represents 227Ac in the sample. Here we exploit this fact, presenting a set of 284 values on the oceanic distribution of 227Ac, which was collected when analyzing water samples for short-lived radium isotopes by the radium delayed coincidence counting system. The present work compiles 227Ac data from coastal regions all over the northern hemisphere, including values from ground water, from estuaries and lagoons, and from marine end-members. Deep-sea samples from a continental slope off Puerto Rico and from an active vent site near Hawaii complete the overview of 227Ac near its potential sources. The average 227Ac activities of nearshore marine end-members range from 0.4 dpm/m**3 at the Gulf of Mexico to 3.0 dpm m? 3 in the coastal waters of the Korean Strait. In analogy to 228Ra, we find the extension of adjacent shelf regions to play a substantial role for 227Ac activities, although less pronounced than for radium, due to its weaker shelf source. Based on previously published values, we calculate an open ocean 227Ac inventory of 1.35 * 1018 dpm 227Acex in the ocean, which corresponds to 37 moles, or 8.4 kg. This implies a flux of 127 dpm/m**2/y from the deep-sea floor. For the shelf regions, we obtain a global inventory of 227Ac of 4.5 * 10**15 dpm, which cannot be converted directly into a flux value, as the regional loss term of 227Ac to the open ocean would have to be included. Ac has so far been considered to behave similarly to Ra in the marine environment, with the exception of a strong Ac source in the deep-sea due to 231Paex. Here, we present evidence of geochemical differences between Ac, which is retained in a warm vent system, and Ra, which is readily released [Moore, W.S., Ussler, W. and Paull, C.K., 2008-this issue. Short-lived radium isotopes in the Hawaiian margin: Evidence for large fluid fluxes through the Puna Ridge. Marine Chemistry]. Another potential mechanism of producing deviations in 227Ac/228Ra and daughter isotope ratios from the expected production value of lithogenic material is observed at reducing environments, where enrichment in uranium may occur. The presented data here may serve as a reference for including 227Ac in circulation models, and the overview provides values for some end-members that contribute to the global Ac distribution.
Resumo:
A sediment core from the Lofoten Contourite Drift on the continental slope off Northern Norway, proximal to the former Vestfjorden-Trsnadjupet Ice Stream, details the development, variability and decline of marine margins of the northwestern Fennoscandian Ice Sheet during the time interval 25.3-14 cal ka BP, including the Last Glacial Maximum and onset of the deglaciation based on high-resolution IRD records. From the core interval between 25.3 and 17.7 cal ka BP we report data points with a mean time step of 10 years, between 17.7 cal ka BP and the Holocene time steps are typically 50 years. The core is divided into 7 informal ice-rafted debris (IRD) zones based on the variations in IRD including 7 major IRD maxima (A-G), inferred to represent periods of high iceberg production. Petrological identification reveals dominance of crystalline IRD (monocrystalline, plutonic and metamorphic rock fragments) accounting for 75-80% of total IRD assemblages, while sedimentary fragments generally account for 15-20%. The crystalline fragments (including eclogite and mangerite from a nearby terrestrial source) increase across the IRD peaks while the sedimentary fragments remain constant. This points to the importance of erosional products from icebergs originating from fast-flowing paleo-ice streams including the Vestfjorden-Trsnadjupet Ice Stream draining from the Fennoscandian mainland during the IRD maxima periods. Increased temperature of the adjacent surface water masses was probably an important external forcing factor on the Fennoscandian Ice Sheet behavior because some IRD maxima and plumite deposition from meltwater plumes post-date periods of increased sea surface temperatures. The peak IRD depositions occur in centennial and millennial time cycles (~200, 1030 and 3900 year) indicating some external forcing by solar variation. Both mechanisms could explain the observed synchronous instability of the northwestern Fennoscandian Ice Sheet to other European Ice Sheets.
Resumo:
During Leg 41 Neogene sediments were recovered from five sites off northwest Africa. On the Sierra Leone Rise (Site 366), Neogene sediments consist of nanno oozes, nanno chalk, and calcareous clays 230 meters thick, resting conformably on the late Oligocene sediments. The common succession of zones occurs with two hiatuses. The lower gap corresponds to an interval around the lower/middle Miocene boundary (the Praeorbulina glomerosa and Orbulina suturalis-Globorotalia peri-pheroronda zones are absent) and the upper gap coincides with an interval around the middle/upper Miocene boundary (the Sphaeroidinellopsis sub-dehiscens-GIobigerina druryi, Globigerina nepenthes-Globorotalia siakensis and Globorotalia conlinuosa zones are missing). In the Cape Verde Basin (Site 367) deep-water Neogene turbidites (about 200-250 m thick) contain poor fauna of redeposited and sorted Cretaceous, Eocene, Oligocene, and Neogene species. On the Cape Verde Rise (Site 368) the Neogene section starts with slightly calcareous and non-calcareous clays with poor planktonic foraminifers of the lower Miocene. Later on this area was uplifted and clayey sediments have been replaced upsection in order by more shallow-water clayey nanno and nanno-foraminifer oozes and marls and pure calcareous oozes. In the middle Miocene, planktonic foraminifers are still not diverse, but since the level of the Globigerina nepenthes-Globorotalia siakensis Zone, almost all Neogene zones have been traced. The minimum thickness of the Neogene sediments is about 230 meters. On the continental slope off Spanish Sahara (Site 369) monotonous calcareous pelagic sediments of Neogene age (164 m thick) overlie the late Oligocene comformably, or with a small time gap. A set of zones beginning from the Globigerinoides primordis-Globorotaiia kugleri Zone up to the Globorotalia fohsi fohsi Zone has been revealed with a gap corresponding to the Globigerinita stainforthi and the Globigerinatella insueta-Globigerinoides irilobus zones. Above that follow sediments with heterogeneous microfauna which result from redeposition or mixing of sediments during drilling. The section ends with sediments of the late Miocene and lower Pliocene with abundant planktonic foraminifers. The latter are unconformably overlain by the Quaternary ooze. In the Morocco basin (Site 370) deep-water marls and calcareous clays of the lower Miocene contain poor assemblages of planktonic foraminifers. The middle and upper Miocene are represented by turbidites (alternation of nanno oozes, clays, siltstones, and sands) with heterogeneous microfauna. Total thickness of Neogene is up to 200 meters. In general the Neogene foraminifer microfauna of the area studied includes the majority of species which developed within the tropical-subtropical belt. The entire succession of the Miocene and Pliocene foraminifer zones occurs. The only exclusion is the Sphaeroidinellopsis subdehiscens-Globigerina druryi Zone of the middle Miocene. The distribution of species is shown on three tables. Comments are given for 47 species and subspecies of foraminifers (stratigraphic ranges, peculiarities of morphology, and ultrastructure of the shell wall).
Resumo:
In order to study late Holocene changes in sediment supply into the northern Arabian Sea, a 5.3 m long gravity core was investigated by high-resolution geochemical and mineralogical techniques. The sediment core was recovered at a water depth of 956 m from the continental slope off Pakistan and covers a time span of 5 kyr. During the late Holocene source areas delivering material to the sampling site did, however, not change and were active throughout the year.
Resumo:
Based on sedimentological, mineralogical, geochemical, and micropaleontological data on comprehensively investigated Core ASV16-1372, Late Pleistocene - Holocene sedimentation history is reconstructed for the Voring marginal plateau (continental margin of the Norwegian Sea). An age model constructed is based on correlation with several adjacent cores, for which AMS radiocarbon datings are available. Lithostratigraphic correlation made it possible to compare stratigraphic division of Core ASV16-1372 with other cores sampled on the Voring Plateau and the shelf and continental slope off Central Norway. It is concluded that compositional and structural features of bottom sediments are correlated with paleoclimatic and paleoceanographic changes, variations in provenances, as well as agents and pathways of sedimentary material transport.
Resumo:
Geochemical and rock magnetic investigations of sediments from three sites on the continental margin off Argentina and Uruguay were carried out to study diagenetic alteration of iron minerals driven by anaerobic oxidation of methane (AOM). The western Argentine Basin represents a suitable sedimentary environment to study nonsteady-state processes because it is characterized by highly dynamic depositional conditions. Mineralogic and bulk solid phase data document that the sediment mainly consists of terrigenous material with high contents of iron minerals. As a typical feature of these deposits, distinct minima in magnetic susceptibility (k) are observed. Pore water data reveal that these minima in susceptibility coincide with the current depth of the sulfate/methane transition (SMT) where HS- is generated by the process of AOM. The released HS- reacts with the abundant iron (oxyhydr)oxides resulting in the precipitation of iron sulfides accompanied by a nearly complete loss of magnetic susceptibility. Modeling of geochemical data suggest that the magnetic record in this area is highly influenced by a drastic change in mean sedimentation rate (SR) which occurred during the Pleistocene/Holocene transition. We assume that the strong decrease in mean SR encountered during this glacial/interglacial transition induced a fixation of the SMT at a specific depth. The stagnation has obviously enhanced diagenetic dissolution of iron (oxyhydr)oxides within a distinct sediment interval. This assumption was further substantiated by numerical modeling in which the mean SR was decreased from 100 cm/kyr during glacial times to 5 cm/kyr in the Holocene and the methane flux from below was fixed to a constant value. To obtain the observed geochemical and magnetic patterns, the SMT must remain at a fixed position for ~9000 yrs. This calculated value closely correlates to the timing of the Pleistocene/Holocene transition. The results of the model show additionally that a constant high mean SR would cause a concave-up profile of pore water sulfate under steady state conditions.